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Abstract

In this paper, we construct a supply chain network model with information asymmetry

in product quality. The competing, profit-maximizing firms with, possibly, multiple manu-

facturing plants, which may be located on-shore or off-shore, are aware of the quality of the

product that they produce but consumers, at the demand markets, only know the average

quality. Such a framework is relevant to products ranging from certain foods to pharmaceu-

ticals. We propose both an equilibrium model and its dynamic counterpart and demonstrate

how minimum quality standards can be incorporated. Qualitative results as well as an algo-

rithm are presented, along with convergence results. The numerical examples, accompanied

by sensitivity analysis, reveal interesting results and insights for firms, consumers, as well as

policy-makers, who impose the minimum quality standards.

Keywords: supply chains, game theory, quality competition, information asymmetry, net-

works, variational inequalities, projected dynamical systems, minimum quality standards
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1. Introduction

Supply chain networks have transformed the manner in which goods are produced, trans-

ported, and consumed around the globe and have created more choices and options for con-

sumers during different seasons. At the same time, given the distances that may be involved

as well as the types of products that are consumed, there may be information asymmetry

associated with knowledge about the quality of the products. For example, producers in

many different industries may be aware of their product quality whereas consumers at the

demand markets may only be aware of the average quality. Such information asymmetry in

quality results in products being, in effect, homogeneous at demand markets since there is

no differentiation by brands or labels (see Baltzer (2012)).

Information asymmetry becomes increasingly complex when manufacturers (producers)

have, at their disposal, multiple manufacturing plants, which may be on-shore or off-shore,

with the ability to monitor the quality in the latter sometimes challenging. Indeed, major

issues and quality problems associated with distinct manufacturing plants and products

ranging from food to pharmaceuticals have been the focus of increasing attention (cf. Gray,

Roth, and Leiblein (2011), Thomas (2012), McDonald (2013), Hogenau (2013), Masoumi,

Yu, and Nagurney (2012), and Yu and Nagurney (2013)). Akerlof (1970) utilized used

automobiles, with those of inferior quality referred to as lemons, as an illustrative example

in his classic work on information asymmetry in quality, which has stimulated research in

this domain. Baltzer (2012) further noted that firms producing the product have control

over the quality but consumers may be unable to observe the level of quality as in the case

not only with respect to the safety of cars but also the level of microbiological contaminants

in food as well as chemical residues in toys.

To-date, markets with asymmetric information in terms of product quality have been

studied by many notable economists, including Akerlof (1970), already noted above, Spence

(1973, 1975), and Stiglitz (1987), all of whom shared the Nobel Prize in Economic Sci-

ences. Leland (1979) further argued that such markets may benefit from minimum quality

standards. However, information asymmetry in a supply chain network context with a fo-

cus on production, as well as transportation, has been minimally explored research-wise.

Hence, in this paper, we develop both static and dynamic competitive supply chain network

models with information asymmetry in quality. We consider multiple profit-maximizing

firms, which are spatially separated, and may have multiple plants at their disposal. The

firms are involved in the production of a product, and compete in multiple demand markets

in a Cournot-Nash manner in product shipments and product quality levels. In addition,

we demonstrate how minimum quality standards can be incorporated into the framework,
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which has wide relevance for policy-making and regulation (see, e.g., Giraud-Heraud and

Soler (2006) and Smith (2009)). We consider imperfect competition in the form of a sup-

ply chain network oligopoly and note that Baltzer (2012) considered two firms involved in

Bertrand competition with specific underlying functional forms. Our model, in contrast,

assumes Cournot-Nash competition in both quantities and quality levels, is network-based,

is not limited to two firms, among other distinctions.

Recent examples of supply chain network models include: the optimization models for

supply chain network design of Nagurney (2010a) and of Nagurney and Nagurney (2012),

which focused on medical nuclear supply chains, and the game theory models for fashion

supply chain networks with competition by Nagurney and Yu (2012); for food by Yu and

Nagurney (2013), and for pharmaceuticals by Masoumi, Yu, and Nagurney (2012), among

others. See also the models in the books by Nagurney (2006) and Nagurney et al. (2013b).

However, quality and information asymmetry were not considered in any of these models.

Furthermore, in our quality competition supply chain research (cf. Nagurney and Li (2013)

and Nagurney, Li, and Nagurney (2013)), as well as that in a service-oriented Internet (see

Nagurney and Wolf (2013), Nagurney et al. (2013a, 2014), and Saberi, Nagurney, and Wolf

(2013)), we assume that consumers can always differentiate among the products of different

firms and that no quality information asymmetry exists.

Specifically, in this paper, information asymmetry in quality is considered, which occurs

between the firms, producing the product, and the consumers at the demand markets. Firms

are aware of the quality of the product produced at each of their manufacturing plants, with

different manufacturing plants owned by the same firm having, possibly, different quality

levels. However, the quality levels perceived by consumers at the demand markets are the

average quality levels of the products (see also Akerlof (1970) and Leland (1979)). Informa-

tion asymmetry between produced and perceived quality levels and quality uncertainty were

widely discussed in Wankhade and Dabade (2010), but no supply chain network models were

established.

We now provide a literature review of supply chain models with information asymmetry.

The value, effects, and/or incentives of information and information sharing were recently

studied in Corbett, Zhou, and Tang (2004), Mishra, Raghunathan, and Yue (2009), Thomas,

Warsing, and Zhang (2009), Ren et al. (2010), and Esmaeili and Zeephongsekul (2010). All

of these studies were based on a single supplier and a single buyer supply chain. An extensive

review of the early literature on information sharing can be found in Chen (2003).

In addition, a significant literature on information asymmetry focuses on supply chain
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contracting problems; for an early review, see Cachon (2003). Hasija, Pinker, and Shumsky

(2008) examined contracts for a call center outsourcing problem with information asymme-

try in worker productivity. Xu et al. (2010) investigated a contract setting problem of a

manufacturer who has one prime supplier and one urgent supplier. Lee and Yang (2013)

studied supply chain contracting problems involving one retailer and two suppliers. Exam-

ples of recent quantity discount contracting models with information asymmetry are given

in Burnetas, Gilbertm, and Smith (2007) and Zhou (2008). Except where noted otherwise,

all the above models are based on two entity supply chain “networks,” and the asymmetric

information considered is mostly in terms of demand and cost.

The novelty of the contributions in this paper consists in the following:

1. Both static (equilibrium) and dynamic versions of supply chain network competition

are captured under information asymmetry in quality with and without minimum quality

standards using, respectively, variational inequality theory and projected dynamical systems

theory.

2. Firms have, as their strategic variables, both the shipment amounts produced at their

manufacturing plants as well as the quality levels. The information asymmetry lies in that

the firms know the quality of the products produced at their plants but consumers at the

demand markets are only aware of the average quality since the consumers cannot distinguish

among the producers.

3. Quality is associated not only with the manufacturing plants but also tracked through the

transportation process, which is assumed to preserve (at the appropriate cost) the product

quality.

4. We do not impose any specific functional forms on the production cost, transportation

cost, and demand price functions nor do we limit ourselves to only one or two manufacturers,

manufacturing plants, or demand markets. We, nevertheless, assume that the firms compete

in an oligopolistic manner (cf. Tirole (1988)).

5. Both theoretical results, in the form of existence and uniqueness results as well as stability

analysis, and an effective and efficient algorithmic scheme are provided with convergence for

the latter. We also provide solutions to numerical examples, accompanied by sensitivity

analyses, to illustrate the generality and usefulness of the models for firms, for consumers,

as well as for policy-makers.

The paper is organized as follows. In Section 2, we present both the static models (without

and with minimum quality standards), along with their variational inequality formulations,
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as well as the dynamic version using projected dynamical systems theory. In Section 3, we

then provide qualitative properties of the equilibrium solutions and establish that the set of

stationary points of our projected dynamical systems formulation coincides with the set of

solutions to the corresponding variational inequality problem. In Section 4, we describe the

algorithmic scheme, which yields closed form expressions in product shipments and quality

levels at each iteration, and establish convergence. In Section 5, we provide numerical

examples and conduct sensitivity analyses, which yield valuable insights for firms, consumers,

and policy-makers. In Section 6, we summarize the results and present our conclusions.

2. Supply Chain Network Competition with Information Asymmetry in Quality

In this Section, we construct the supply chain network equilibrium model in which the

firms compete in product quantities and quality levels and there is information asymmetry

in quality. We first consider the case without minimum quality standards and them demon-

strate how standards can be incorporated. We follow with the development of the dynamic

counterpart of the latter, which contains the former as a special case. The static equilibrium

model(s) are given in Section 2.1 and the dynamic version in Section 2.2.

2.1 The Equilibrium Model Without and With Minimum Quality Standards

We first present the model without minimum quality standards and then show how it can

be extended to include minimum quality standards, which are useful policy instruments in

practice.

We consider I firms, with a typical firm denoted by i, which compete with one another in a

noncooperative Cournot-Nash (Cournot (1838), Nash (1950, 1951)) manner in the production

and distribution of the product. Each firm i has, at its disposal, ni manufacturing plants.

The firms determine the quantities to produce at each of their manufacturing plants and

the quantities to ship to the nR demand markets. They also control the quality level of the

product at each of their manufacturing plants. Information asymmetry occurs in that the

firms are aware of the quality levels of the product produced at each of their manufacturing

plants but the consumers are only aware of the average quality levels of the product at the

demand markets.

We consider the supply chain network topology depicted in Figure 1. The top nodes

correspond to the firms, the middle nodes to the manufacturing plants, and the bottom

nodes to the common demand markets. We assume that the demand at each demand market

is positive; otherwise, the demand market (node) will be removed from the supply chain

network.
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In Figure 1, the first set of links connecting the top two tiers of nodes corresponds to

the process of manufacturing at each of the manufacturing plants of firm i; i = 1, . . . , I.

Such plants are denoted by M1
i , . . . ,Mni

i , respectively, for firm i, with a typical one denoted

by M j
i ; j = 1, . . . , ni. The manufacturing plants may be located not only in different

regions of a country but also in different countries. The next set of links connecting the

two bottom tiers of the supply chain network corresponds to transportation links joining the

manufacturing plants with the demand markets, with a typical demand market denoted by

Rk; k = 1, . . . , nR.
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Figure 1: The Supply Chain Network Topology

The nonnegative product amount produced at firm i’s manufacturing plant M j
i and

shipped to demand market Rk is denoted by Qijk; i = 1, . . . , I; j = 1, . . . , ni; k = 1 . . . , nR.

For each firm i, we group its Qijks into the vector Qi ∈ RninR
+ , and then group all such

vectors for all firms into the vector Q ∈ R
PI

i=1 ninR

+ .

We denote the nonnegative production output of firm i’s manufacturing plant M j
i by

sij. The demand for the product at demand market Rk is denoted by dk; k = 1, . . . , nR,

and the quality level or, simply, quality, of the product produced by firm i’s manufacturing

plant M j
i is denoted by qij. Note that different manufacturing plants owned by a firm may

have different quality levels. This is highly reasonable since, for example, different plants

may have different resources available in terms of skilled labor and facilities as well as labor

expertise and even infrastructure.
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The output at firm i’s manufacturing plant M j
i and the demand for the product at each

demand market Rk must satisfy, respectively, the conservation of flow equations (1) and (2):

sij =

nR∑
k=1

Qijk, i = 1, . . . , I; j = 1, . . . , ni, (1)

dk =
I∑

i=1

ni∑
j=1

Qijk, k = 1, . . . , nR. (2)

Hence, the output produced at firm i’s manufacturing plant M j
i is equal to the sum of the

amounts shipped to the demand markets, and the quantity consumed at a demand market

is equal to the sum of the amounts shipped by the firms to that demand market. We group

all sijs into the vector s ∈ R
PI

i=1 ni

+ and all dks into the vector d ∈ RnR
+ . For each firm i, we

group its own plant quality levels into the vector qi ∈ Rni
+ and then group all such vectors

for all firms into the vector q ∈ R
PI

i=1 ni

+ .

The product shipments must be nonnegative, that is:

Qijk ≥ 0, i = 1, . . . , I; j = 1, . . . , ni; k = 1, . . . , nR, (3)

In addition, as in Nagurney and Li (2013), Nagurney, Li, and Nagurney (2013), Nagurney

and Wolf (2013), and Nagurney et al. (2013a, 2014), we define and quantify quality as the

quality conformance level, that is, the degree to which a specific product conforms to a

design or specification (Gilmore (1974), Juran and Gryna (1988)). The quality levels cannot

be lower than 0; thus,

qij ≥ 0, i = 1, . . . , I; j = 1, . . . , ni. (4)

The production cost at firm i’s manufacturing plant M j
i is denoted by fij. We allow

for the general situation where fij may depend upon the entire production pattern and the

entire vector of quality levels, that is,

fij = fij(s, q), i = 1, . . . , I; j = 1, . . . , ni. (5a)

In view of (1), we can define the plant manufacturing cost functions f̂ij; i = 1, . . . , I; j =

1, . . . , ni, in shipment quantities and quality levels, that is,

f̂ij = f̂ij(Q, q) ≡ fij(s, q). (5b)

Let ĉijk denote the total transportation cost associated with shipping the product pro-

duced at firm i’s manufacturing plant M j
i to demand market Rk, assuming quality preser-

vation, that is,

ĉijk = ĉijk(Q, q), i = 1, . . . , I; j = 1, . . . , ni; k = 1, . . . , nR. (6)
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Note that, according to (6), the transportation cost is such that the quality of the product

is not degraded as it undergoes the shipment process. Transportation cost functions in both

quantities and quality levels were utilized by Nagurney and Wolf (2013), Saberi, Nagurney,

and Wolf (2013), and Nagurney et al. (2014) but in the context of Internet applications and

not supply chains.

Since the products of the I firms are, in effect, homogeneous, common resources and

technologies may be utilized in the processes of manufacturing and transportation. In this

model, in order to capture the competition for resources and technologies on the supply side,

we allow for general production cost functions, which may depend on the vectors s and q (cf.

(5a)), and general transportation cost functions, which may depend on the vectors Q and

q (cf. (6)). Such general production and transportation cost functions in both quantities

and quality levels are utilized, for the first time, in a supply chain context in our model.

The production cost functions (5a) and the transportation functions (6) are assumed to be

convex and continuously differentiable.

The consumers’ perception of the quality of the product, which may come from different

firms, is for the average quality level, q̂k; k = 1, . . . , nR, where

q̂k =

∑I
i=1

∑ni

j=1 Qijkqij

dk

, k = 1, . . . , nR (7)

with the average (perceived) quality levels grouped into the vector q̂ ∈ RnR
+ . A variant of

(7) was utilized in Nagurney, Li, and Nagurney (2013) to assess the average quality level

of pharmaceuticals in the case of outsourcing, but the demands were assumed to be fixed

and known and there was only a single manufacturer with multiple plants but multiple firms

to outsource to. Here, in contrast, we have elastic demands which are price and average

quality level sensitive, as we discuss below. Moreover, in the new model(s) we explicitly

allow for distinct quality levels associated with individual plants of a firm, rather than with

outsourcing.

The demand price at demand market Rk is denoted by ρk. We allow the demand price

function at a demand market to depend, in general, upon the entire demand pattern, as well

as on the average quality levels at all the demand markets, that is,

ρk = ρk(d, q̂), k = 1, . . . , nR. (8a)

Each demand price function is, typically, assumed to be monotonically decreasing in prod-

uct quantity but increasing in terms of the average product quality. Demand functions that

are functions of the prices and the average quality levels were also used by Akerlof (1970).
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Therein the producers, in the form of a supply market, are aware of their product quality lev-

els (cf. (5a)), while consumers at the demand markets are aware only of the average quality

levels. However, Akerlof (1970) did not consider multiple manufacturing plants, transporta-

tion, and multiple demand markets. Moreover, he did not model the profit-maximizing

behavior of individual, competing firms, as we do here.

In light of (2) and (7), we can define the demand price function ρ̂k; k = 1, . . . , nR, in

quantities and quality levels of the firms, so that

ρ̂k = ρ̂k(Q, q) ≡ ρk(d, q̂), k = 1, . . . , nR. (8b)

We assume that the demand price functions (8a) and (8b) are continuous and continuously

differentiable.

The strategic variables of firm i are its product shipments {Qi} and its quality levels qi.

The profit/utility Ui of firm i; i = 1, . . . , I, is given by:

Ui =

nR∑
k=1

ρk(d, q̂)

ni∑
j=1

Qijk −
ni∑

j=1

fij(s, q)−
nR∑
k=1

ni∑
j=1

ĉijk(Q, q), (9a)

which is the difference between its total revenue and its total costs (production and trans-

portation). By making use of (5b) and (8b), (9a) is equivalent to

Ui =

nR∑
k=1

ρ̂k(Q, q)

ni∑
j=1

Qijk −
ni∑

j=1

f̂ij(Q, q)−
nR∑
k=1

ni∑
j=1

ĉijk(Q, q). (9b)

In view of (1) - (9b), we may write the profit as a function solely of the product shipment

pattern and quality levels, that is,

U = U(Q, q), (10)

where U is the I-dimensional vector with components: {U1, . . . , UI}.

Let Ki denote the feasible set corresponding to firm i, where Ki ≡ {(Qi, qi)|Qi ≥
0, and qi ≥ 0} and define K ≡

∏I
i=1 Ki.

We consider Cournot-Nash competition, in which the I firms produce and deliver their

product in a noncooperative fashion, each one trying to maximize its own profit. We seek to

determine a nonnegative product shipment and quality level pattern (Q∗, q∗) ∈ K for which

the I firms will be in a state of equilibrium as defined below.
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Definition 1: A Supply Chain Network Cournot-Nash Equilibrium with Infor-

mation Asymmetry in Quality

A product shipment and quality level pattern (Q∗, q∗) ∈ K is said to constitute a supply chain

network Cournot-Nash equilibrium with information asymmetry in quality if for each firm i;

i = 1, . . . , I,

Ui(Q
∗
i , q

∗
i , Q̂

∗
i , q̂

∗
i ) ≥ Ui(Qi, qi, Q̂

∗
i , q̂

∗
i ), ∀(Qi, qi) ∈ Ki, (11)

where

Q̂∗i ≡ (Q∗1, . . . , Q
∗
i−1, Q

∗
i+1, . . . , Q

∗
I) and q̂∗i ≡ (q∗1, . . . , q

∗
i−1, q

∗
i+1, . . . , q

∗
I ).

According to (11), an equilibrium is established if no firm can unilaterally improve upon

its profits by selecting an alternative vector of product shipments and quality level of its

product.

Variational Inequality Formulations

We now present alternative variational inequality formulations of the above supply chain

network Cournot-Nash equilibrium in the following theorem.

Theorem 1: Variational Inequality Formulations

Assume that for each firm i the profit function Ui(Q, q) is concave with respect to the vari-

ables in Qi and qi, and is continuous and continuously differentiable. Then the product

shipment and quality pattern (Q∗, q∗) ∈ K is a supply chain network Cournot-Nash equilib-

rium with quality information asymmetry according to Definition 1 if and only if it satisfies

the variational inequality

−
I∑

i=1

ni∑
j=1

nR∑
k=1

∂Ui(Q
∗, q∗)

∂Qijk

×(Qijk−Q∗ijk)−
I∑

i=1

ni∑
j=1

∂Ui(Q
∗, q∗)

∂qij

×(qij−q∗ij) ≥ 0, ∀(Q, q) ∈ K,

(12)

that is,

I∑
i=1

ni∑
j=1

nR∑
k=1

[
−ρ̂k(Q

∗, q∗)−
nR∑
l=1

∂ρ̂l(Q
∗, q∗)

∂Qijk

ni∑
h=1

Q∗ihl +

ni∑
h=1

∂f̂ih(Q
∗, q∗)

∂Qijk

+

ni∑
h=1

nR∑
l=1

∂ĉihl(Q
∗, q∗)

∂Qijk

]

×(Qijk −Q∗ijk)

+
I∑

i=1

ni∑
j=1

[
−

nR∑
k=1

∂ρ̂k(Q
∗, q∗)

∂qij

ni∑
h=1

Q∗ihk +

ni∑
h=1

∂f̂ih(Q
∗, q∗)

∂qij

+

ni∑
h=1

nR∑
k=1

∂ĉihk(Q
∗, q∗)

∂qij

]
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×(qij − q∗ij) ≥ 0, ∀(Q, q) ∈ K; (13)

equivalently, (d∗, s∗, Q∗, q∗) ∈ K1 is an equilibrium production, shipment, and quality level

pattern if and only if it satisfies the variational inequality

nR∑
k=1

[−ρk(d
∗, q̂∗)]× (dk − d∗k) +

I∑
i=1

ni∑
j=1

[
ni∑

h=1

∂fih(s
∗, q∗)

∂sij

]
× (sij − s∗ij)

+
I∑

i=1

ni∑
j=1

nR∑
k=1

[
−

nR∑
l=1

∂ρl(d
∗, q̂∗)

∂Qijk

ni∑
h=1

Q∗ihl +

ni∑
h=1

nR∑
l=1

∂ĉihl(Q
∗, q∗)

∂Qijk

]
× (Qijk −Q∗ijk)

+
I∑

i=1

ni∑
j=1

[
−

nR∑
k=1

∂ρk(Q
∗, q̂∗)

∂qij

ni∑
h=1

Q∗ihk +

ni∑
h=1

∂fih(s
∗, q∗)

∂qij

+

ni∑
h=1

nR∑
k=1

∂ĉihk(Q
∗, q∗)

∂qij

]
×(qij − q∗ij) ≥ 0, ∀(d, s,Q, q) ∈ K1, (14)

where K1 ≡ {(d, s,Q, q)|Q ≥ 0, q ≥ 0, and (1), (2), and (7) hold}.

Proof: (12) follows directly from Gabay and Moulin (1980) and Dafermos and Nagurney

(1987). For firm i’s manufacturing plant M j
i ; i = 1, . . . , I; j = 1, . . . , ni and demand market

Rk; k = 1, . . . , nR, we have:

−∂Ui(Q, q)

∂Qijk

= −∂[
∑nR

l=1 ρ̂l(Q, q)
∑ni

h=1 Qihl −
∑ni

h=1 f̂ih(Q, q)−
∑ni

h=1

∑nR

l=1 ĉihl(Q, q)]

∂Qijk

= −
nR∑
l=1

∂[ρ̂l(Q, q)
∑ni

h=1 Qihl]

∂Qijk

+

ni∑
h=1

∂f̂ih(Q, q)

∂Qijk

+

ni∑
h=1

nR∑
l=1

∂ĉihl(Q, q)

∂Qijk

= −ρ̂k(Q, q)−
nR∑
l=1

∂ρ̂l(Q, q)

∂Qijk

ni∑
h=1

Qihl +

ni∑
h=1

∂f̂ih(Q, q)

∂Qijk

+

ni∑
h=1

nR∑
l=1

∂ĉihl(Q, q)

∂Qijk

. (15)

Also, for firm i’s manufacturing plant M j
i ; i = 1, . . . , I; j = 1, . . . , ni, we have:

−∂Ui(Q, q)

∂qij

= −∂[
∑nR

k=1 ρ̂k(Q, q)
∑ni

h=1 Qihk −
∑ni

h=1 f̂ih(Q, q)−
∑ni

h=1

∑nR

k=1 ĉihk(Q, q)]

∂qij

= −
nR∑
k=1

∂ρ̂k(Q, q)

∂qij

ni∑
h=1

Qihk +

ni∑
h=1

∂f̂ih(Q, q)

∂qij

+

ni∑
h=1

nR∑
k=1

∂ĉihk(Q, q)

∂qij

. (16)

Thus, variational inequality (13) is immediate. In addition, by re-expressing the produc-

tion cost functions and the demand price functions in (15) and (16) as in (5b) and (8b)

and using the conservation of flow equations (1) and (2) and ∂fih(s,q)
∂Qijk

= ∂fih(s,q)
∂sij

∂sij

∂Qijk
, the

equivalence of variational inequalities (13) and (14) holds true.2
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For additional background on the variational inequality problem, we refer the reader to

the book by Nagurney (1999).

We now describe an extension of the above framework that incorporates minimum quality

standards. The effectiveness of the imposition of minimum quality standards on quality

has been studied in economics with or without information asymmetry (see Leland (1979),

Shapiro (1983), Besanko, Donnenfeld, and White (1988), Ronnen (1991), and Lutz and Lutz

(2010)). In this paper, we integrate our framework with minimum quality standards and

the framework without, and present the equilibrium conditions of both through a unified

variational inequality formulation.

We retain the above notation and firm behavior and constraints but now we impose

nonnegative lower bounds on the quality levels at the manufacturing plants, denoted by q
ij
;

i = 1, . . . , I; j = 1, . . . , ni so that (4) is replaced by:

qij ≥ q
ij

i = 1, . . . , I; j = 1, . . . , ni (17)

with the understanding that, if the lower bounds are all identically equal to zero, then (17)

collapses to (4) and, if the lower bounds are positive, then they represent minimum quality

standards.

We define a new feasible set K2 ≡ {(Q, q)|Q ≥ 0 and (17) holds}. Then the following

Corollary is immediate.

Corollary 1: Variational Inequality Formulations with Minimum Quality Stan-

dards

Assume that for each firm i the profit function Ui(Q, q) is concave with respect to the variables

in Qi and qi, and is continuous and continuously differentiable. Then the product shipment

and quality pattern (Q∗, q∗) ∈ K2 is a supply chain network Cournot-Nash equilibrium with

quality information asymmetry in the presence of minimum quality standards if and only if

it satisfies the variational inequality

−
I∑

i=1

ni∑
j=1

nR∑
k=1

∂Ui(Q
∗, q∗)

∂Qijk

×(Qijk−Q∗ijk)−
I∑

i=1

ni∑
j=1

∂Ui(Q
∗, q∗)

∂qij

×(qij−q∗ij) ≥ 0, ∀(Q, q) ∈ K2,

(18)

that is,

I∑
i=1

ni∑
j=1

nR∑
k=1

[
−ρ̂k(Q

∗, q∗)−
nR∑
l=1

∂ρ̂l(Q
∗, q∗)

∂Qijk

ni∑
h=1

Q∗ihl +

ni∑
h=1

∂f̂ih(Q
∗, q∗)

∂Qijk

+

ni∑
h=1

nR∑
l=1

∂ĉihl(Q
∗, q∗)

∂Qijk

]

12



×(Qijk −Q∗ijk)

+
I∑

i=1

ni∑
j=1

[
−

nR∑
k=1

∂ρ̂k(Q
∗, q∗)

∂qij

ni∑
h=1

Q∗ihk +

ni∑
h=1

∂f̂ih(Q
∗, q∗)

∂qij

+

ni∑
h=1

nR∑
k=1

∂ĉihk(Q
∗, q∗)

∂qij

]
×(qij − q∗ij) ≥ 0, ∀(Q, q) ∈ K2. (19)

Variational inequality (19) contains variational inequality (13) as a special case when the

minimum quality standards are all zero, and it will play a crucial role in the next section

when we describe the underlying dynamics associated with the firms’ adjustment processes

in product shipments and quality levels until an equilibrium point, equivalently, a stationary

point, is achieved.

We now put variational inequality (19) into standard form (cf. Nagurney (1999)): de-

termine X∗ ∈ K where X is a vector in RN , F (X) is a continuous function such that

F (X) : X 7→ K ⊂ RN , and

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (20)

where 〈·, ·〉 is the inner product in the N -dimensional Euclidean space, and K is closed

and convex. We define the vector X ≡ (Q, q) and the vector F (X) ≡ (F 1(X), F 2(X)).

Also, here N =
∑I

i=1 ninR +
∑I

i=1 ni. F 1(X) consists of components F 1
ijk = −∂Ui(Q,q)

∂Qijk
;

i = 1, . . . , I; j = 1, . . . , ni; k = 1, . . . , nR, and F 2(X) consist of components F 2
ij = −∂Ui(Q,q)

∂qij
;

i = 1, . . . , I; j = 1, . . . , ni. In addition, we define the feasible set K ≡ K2. Hence, (19) can

be put into standard form (20).

2.2 The Dynamic Model

We now describe the underlying dynamics for the evolution of product shipments and

quality levels under information asymmetry in quality until the equilibrium satisfying vari-

ational inequality (19) is achieved. We identify the dynamic adjustment processes for the

evolution of the firm’s product shipments and quality levels. In Section 4, we provide a

an algorithm, which is a discrete-time version of the continuous-time adjustment processes

introduced below.

Observe that, for a current vector of product shipments and quality levels at time t,

X(t) = (Q(t), q(t)), −F 1
ijk(X(t)) = ∂Ui(Q(t),q(t))

∂Qijk
is the marginal utility (profit) of firm i with

respect to the volume produced at its manufacturing plant j and distributed to demand

market k. −F 2
ij(X(t)) = ∂Ui(Q(t),q(t))

∂qij
is firm i’s marginal utility with respect to the quality

13



level of its manufacturing plant j. In this framework, the rate of change of the product

shipment between firm i’s manufacturing plant j and demand market k is in proportion to

−F 1
ij(X), as long as the product shipment Qijk is positive.

Namely, when Qijk > 0,

Q̇ijk =
∂Ui(Q, q)

∂Qijk

, (21)

where Q̇ijk denotes the rate of change of Qijk. However, when Qijk = 0, the nonnegativity

condition (3) forces the product shipment Qijk to remain zero when ∂Ui(Q,q)
∂Qijk

≤ 0. Hence, we

are only guaranteed of having possible increases of the shipment, that is, when Qijk = 0,

Q̇ijk = max{0, ∂Ui(Q, q)

∂Qijk

}. (22)

We may write (21) and (22) concisely as:

Q̇ijk =

{
∂Ui(Q,q)

∂Qijk
, if Qijk > 0

max{0, ∂Ui(Q,q)
∂Qijk

}, if Qijk = 0.
(23)

As for the quality levels, when qij > q
ij
, then

q̇ij =
∂Ui(Q, q)

∂qij

, (24)

where q̇ij denotes the rate of change of qij; when qij = q
ij
,

q̇ij = max{q
ij
,
∂Ui(Q, q)

∂qij

}, (25)

since qi cannot be lower than q
ij

according to the feasible set K = K2.

Combining (24) and (25), we may write:

q̇ij =

{
∂Ui(Q,q)

∂qij
, if qij > q

ij

max{q
ij
, ∂Ui(Q,q)

∂qij
}, if qij = q

ij
.

(26)

Applying (23) to all firm and manufacturing plant pairs (i, j); i = 1, . . . , I; j = 1, . . . , ni

and all demand markets k; k = 1, . . . , nR, and then applying (26) to all firm and manufac-

turing plant pairs (i, j); i = 1, . . . , I; j = 1, . . . , ni, and combining the resultants, yields the

following pertinent ordinary differential equation (ODE) for the adjustment processes of the

product shipments and quality levels, in vector form:

Ẋ = ΠK(X,−F (X)), (27)

14



where, since K is a convex polyhedron, according to Dupuis and Nagurney (1993),

ΠK(X,−F (X)) is the projection, with respect to K, of the vector −F (X) at X defined as

ΠK(X,−F (X)) = lim
δ→0

PK(X − δF (X))−X

δ
(28)

with PK denoting the projection map:

P(X) = argminz∈K‖X − z‖, (29)

and where ‖ · ‖ = 〈x, x〉 and −F (X) = ∇U(Q, q), where ∇U(Q, q) is the vector of marginal

utilities as described above.

We now further interpret ODE (27) in the context of the supply chain network competi-

tion model with information asymmetry in quality. First, observe that ODE (27) guarantees

that the product shipments are always nonnegative and the quality levels never go below

the minimum quality standards. In addition, ODE (27) states that the rate of change of

the product shipments and the quality levels is greatest when the firm’s marginal utilities

are greatest. If the marginal utility of a firm with respect to its quality level is positive,

then the firm will increase its quality level; if it is negative, then it will decrease the qual-

ity level, and the quality levels will also never be outside their lower bounds. A similar

adjustment behavior holds for the firms in terms of their product shipments. This type

of behavior is rational from an economic standpoint. Therefore, ODE (27) corresponds to

reasonable continuous adjustment processes for the supply chain network competition model

with information asymmetry in quality.

Since ODE (27) is nonstandard due to its discontinuous right-hand side, we further discuss

the existence and uniqueness of (27). Dupuis and Nagurney (1993) constructed the funda-

mental theory with regards to existence and uniqueness of projected dynamical systems as

defined by (27). We cite the following theorem from that paper.

Theorem 2

X∗ solves the variational inequality problem (20) if and only if it is a stationary point of the

ODE (27), that is,

Ẋ = 0 = ΠK(X∗,−F (X∗)). (30)

This theorem demonstrates that the necessary and sufficient condition for a product

shipment and quality level pattern X∗ = (Q∗, q∗) to be a supply chain network equilibrium

with information asymmetry in quality, according to Definition 1, is that X∗ = (Q∗, q∗) is a

stationary point of the adjustment processes defined by ODE (27), that is, X∗ is the point

at which Ẋ = 0.
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3. Qualitative Properties

We now investigate whether, and, under what conditions, the dynamic adjustment pro-

cesses defined by (27) approach a Cournot-Nash equilibrium. Recall that Lipschitz continuity

of F (X) (cf. Dupuis and Nagurney (1993) and Nagurney and Zhang (1996)) guarantees the

existence of a unique solution to (31) below, where we have that X0(t) satisfies ODE (27)

with initial shipment and quality level pattern (Q0, q0). In other words, X0(t) solves the

initial value problem (IVP)

Ẋ = ΠK(X,−F (X)), X(0) = X0, (31)

with X0(0) = X0. For convenience, sometimes we will write X0 · t for X0(t).

We know that, if the utility functions are twice differentiable and the Jacobian matrix

of F (X), denoted by ∇F (X), is positive-definite, then the corresponding F (X) is strictly

monotone, and the solution to variational inequality (20) is unique, if it exists.

Assumption 1

Suppose that in the supply chain network model with information asymmetry in quality there

exists a sufficiently large M , such that for any (i, j, k),

∂Ui(Q, q)

∂Qijk

< 0, (32)

for all shipment patterns Q with Qijk ≥ M and that there exists a sufficiently large M̄ , such

that for any (i, j),
∂Ui(Q, q)

∂qij

< 0, (33)

for all quality level patterns q with qij ≥ M̄ ≥ q
ij
.

We now give an existence result and a uniqueness result, the proof of which follows from

the basic theory of variational inequalities (cf. Nagurney (1999)).

Proposition 1

Any supply chain network problem with information asymmetry in quality that satisfies As-

sumption 1 possesses at least one equilibrium shipment and quality level pattern satisfying

variational inequality (19) (or (20)).

Proof: The proof follows from Proposition 1 in Zhang and Nagurney (1995). 2
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Proposition 2

Suppose that F is strictly monotone at any equilibrium point of the variational inequality

problem defined in (20). Then it has at most one equilibrium point.

In addition, an existence and uniqueness result is presented in the following, the proof of

which follows from the basic theory of variational inequalities (cf. Nagurney (1999)).

Theorem 3

Suppose that F is strongly monotone. Then there exists a unique solution to variational

inequality (20); equivalently, to variational inequality (19).

The following theorem summarizes the stability properties of the utility gradient pro-

cesses, under various monotonicity conditions on the marginal utilities.

Theorem 4

(i). If F (X) is monotone, then every supply chain network equilibrium with information

asymmetry, X∗, provided its existence, is a global monotone attractor for the projected dy-

namical system. If F (X) is locally monotone at X∗, then it is a monotone attractor for the

projected dynamical system.

(ii). If F (X) is strictly monotone, then there exists at most one supply chain network

equilibrium with information asymmetry in quality, X∗. Furthermore, given existence, the

unique equilibrium is a strictly global monotone attractor for the projected dynamical system.

If F (X) is locally strictly monotone at X∗, then it is a strictly monotone attractor for the

projected dynamical system.

(iii). If F (X) is strongly monotone, then the unique supply chain network equilibrium with

information asymmetry in quality, which is guaranteed to exist, is also globally exponentially

stable for the projected dynamical system. If F (X) is locally strongly monotone at X∗, then

it is exponentially stable.

Proof: The stability assertions follow from Theorems 1.25, 1.26, and 1.27 in Nagurney

(1999); see also Nagurney and Zhang (1996). 2
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4. Algorithm

As mentioned in Section 3, the projected dynamical system yields continuous-time ad-

justment processes. For computational purposes, a discrete-time algorithm, which serves as

an approximation to the continuous-time trajectories, will be introduced in this section.

The algorithm that we employed for the computation of the solution for supply chain

network model with information asymmetry in quality is the Euler method, which is induced

by the general iterative scheme of Dupuis and Nagurney (1993). Specifically, recall that at

iteration τ of the Euler method (see also Nagurney and Zhang (1996)), one computes:

Xτ+1 = PK(Xτ − aτF (Xτ )), (34)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem (20).

As shown in Dupuis and Nagurney (1993) and Nagurney and Zhang (1996), for conver-

gence of the general iterative scheme, which induces the Euler method, the sequence {aτ}
must satisfy:

∑∞
τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ →∞. Specific conditions for convergence

of this scheme as well as various applications to the solutions of other game theory models

can be found in Nagurney, Dupuis, and Zhang (1994), Nagurney (2010b), Nagurney and Yu

(2012), and Nagurney, Li, and Nagurney (2013).

Explicit Formulae for the Euler Method Applied to the Supply Chain Network

Competition Model with Information Asymmetry in Quality

The Euler method yields, at each iteration, explicit formulae for the computation of the

product shipments and quality levels. In particular, we have the following closed form

expressions for the product shipments for i = 1, . . . , I; j = 1, . . . , ni; k = 1, . . . , nR:

Qτ+1
ijk = max{0, Qτ

ijk + aτ (ρ̂k(Q
τ , qτ ) +

nR∑
l=1

∂ρ̂l(Q
τ , qτ )

∂Qijk

ni∑
h=1

Qτ
ihl −

ni∑
h=1

∂f̂ih(Q
τ , qτ )

∂Qijk

−
ni∑

h=1

nR∑
l=1

∂ĉihl(Q
τ , qτ )

∂Qijk

} (35)

and the following closed form expressions for the quality levels for i = 1, . . . , I; j = 1, . . . , ni:

qτ+1
ij = max{q

ij
, qτ

ij +aτ (

nR∑
k=1

∂ρ̂k(Q
τ , qτ )

∂qij

ni∑
h=1

Qτ
ihk−

ni∑
h=1

∂f̂ih(Q
τ , qτ )

∂qij

−
ni∑

h=1

nR∑
k=1

∂ĉihk(Q
τ , qτ )

∂qij

}.

(36)
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We now provide the convergence result. The proof follows using similar arguments as

those in Theorem 5.8 in Nagurney and Zhang (1996).

Theorem 5

In the supply chain network model with information asymmetry in quality, let F (X) =

−∇U(Q, q), where we group all Ui; i = 1, . . . , I, into the vector U(Q, q), be strictly monotone

at any equilibrium shipment pattern and quality levels and assume that Assumption 1 is

satisfied. Furthermore, assume that F is uniformly Lipschitz continuous. Then there exists

a unique equilibrium product shipment and quality level pattern (Q∗, q∗) ∈ K2, and any

sequence generated by the Euler method as given by (34) above, with explicit formulae at

each iteration given by (35) and (36), where {aτ} satisfies
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0,

as τ →∞ converges to (Q∗, q∗).

5. Numerical Examples

In this Section, we present numerical supply chain network examples with information

asymmetry in quality, which we solve via the Euler method, as described in Section 4.

We provide a spectrum of examples, accompanied by sensitivity analysis. We implemented

the Euler method using Matlab on a Lenovo E46A. The convergence tolerance is 10−6, so

that the algorithm is deemed to have converged when the absolute value of the difference

between each successive product shipment and quality level is less than or equal to 10−6.

The sequence {aτ} is set to: .3{1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
, . . .}. We initialize the algorithm by setting the

product shipments equal to 20 and the quality levels equal to 0.

Example 1

The supply chain network topology of Example 1 is given in Figure 2. There are two firms,

both of which have a single manufacturing plant and serve the same demand market R1.

The data are as follows.

The production cost functions at the manufacturing plants, M1
1 and M1

2 , are:

f̂11(Q111, q11) = 0.8Q2
111 + 0.5Q111 + 0.25Q111q11 + 0.5q2

11, (37)

f̂21(Q211, q21) = Q2
211 + 0.8Q211 + 0.3Q211q21 + 0.65q2

21. (38)

The total transportation cost functions from the plants to the demand market R1 are:

ĉ111(Q111, q11) = 1.2Q2
111 + Q111 + 0.25Q211 + 0.25q2

11, (39)
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Figure 2: The Supply Chain Network Topology for Example 1

ĉ211(Q211, q21) = Q2
211 + Q211 + 0.35Q111 + 0.3q2

21. (40)

The demand price function at the demand market R1 is:

ρ̂1(Q, q̂) = 2250− (Q111 + Q211) + 0.8q̂1, (41)

with the average quality expression given by:

q̂1 =
Q111q11 + Q211q21

Q111 + Q211

. (42)

Also, we have that there are no positive imposed minimum quality standards, so that:

q
11

= q
21

= 0.

The Euler method converges in 437 iterations and yields the following equilibrium solu-

tion. The equilibrium product shipments are:

Q∗111 = 323.42, Q∗211 = 322.72,

with the equilibrium demand at the demand market being, hence, d∗1 = 646.14.

The equilibrium quality levels are:

q∗11 = 32.43, q∗21 = 16.91,

with the average quality level at R1, q̂1, being 24.68.

The incurred demand market price at the equilibrium is:

ρ̂1 = 1623.60.
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The profits of the firms are, respectively, 311,926.68 and 313,070.55.

In terms of qualitative analysis, the Jacobian matrix of F (X) = −∇U(Q, q), denoted

by J(Q111, Q211, q11, q21), for this problem and evaluated at the equilibrium point X∗ =

(Q∗111, Q
∗
211, q

∗
11, q

∗
21) is:

J(Q111, Q211, q11, q21) =


5.99 1.01 −0.35 −0.20
0.99 6.01 −0.20 −0.30
−0.35 2.00 1.50 0
0.20 −0.30 0 1.90

 .

The eigenvalues of 1
2
(J + JT ) are: 1.47, 1.88, 5.03, and 7.02, and are all positive. Thus,

the equilibrium solution is unique, and the conditions for convergence of the algorithm are

also satisfied (cf. Theorem 5). Moreover, according to Theorem 4, the equilibrium solution

X∗ to this example is a strictly monotone attractor and it is also exponentially stable.

Sensitivity Analysis

We conducted sensitivity analysis by varying q
11

and q
21

beginning with their values set at 0

and increasing them to reflect the imposition of minimum quality standards set to 200, 400,

600, 800, and 1000. We display the results of this sensitivity analysis in Figures 3 and 4.

As the imposed minimum quality standard of a firm increases, its equilibrium quality level

increases (cf. Figures 3.c and 3.d), which results in increasing production and transportation

costs for the firm. Thus, in order to alleviate increasing costs, its equilibrium shipment

quantity decreases as does its profit (cf. Figures 4.b and 4.c). However, due to competition,

its competitor’s product shipment increases or at least remains the same (cf. Figures 3.a

and 3.b).

Moreover, since consumers at the demand market do not differentiate between the prod-

ucts from different firms, and there is information asymmetry in quality between the firms

(sellers) and the consumers (buyers) at the demand market, the average quality level at

the demand market, as well as the price, which is determined by the quality levels of both

firms (cf. (41) and (42)), is for both firms’ products. Firms prefer a higher average quality,

since, at the same demand level, a higher average quality results in a higher price of the

product. However, once a firm increases its own quality level, of course, the average quality

level and, hence, the price increases, but its total cost will also increase due to the higher

quality. Furthermore, the price increase is not only for the firm’s own product, but also for

its competitor’s product. If a firm increases its own quality, both the firm and its competitor

would get the benefits of the price increase, but only the firm itself would pay for the quality
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Figure 3: Equilibrium Product Shipments, Equilibrium Quality Levels, Average Quality at
the Demand Market, and Price at the Demand Market as q

11
and q

21
Vary in Example 1
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Figure 4: Demand at R1 and the Profits of the Firms as q
11

and q
21

Vary in Example 1

improvement. Thus, a firm prefers a free ride, that is, it prefers that the other firm improve

its product quality and, hence, the price, rather than have it increase its own quality.

Consequently, a firm may not be willing to increase its quality levels, while the other firm

is, unless it is beneficial both cost-wise and profit-wise. This explains why, as the minimum

quality standard of one firm increases, its competitor’s quality level increases slightly or

remains the same (cf. Figures 3.c and 3.d).

When there is an enforced higher minimum quality standard imposed on a firm’s plant(s),

the firm is forced to achieve a higher quality level, which may bring its own profit down but

raise the competitor’s profit (cf. Figures 4.b and 4.c), even though the latter firm may

actually face a lower minimum quality standard. When the minimum quality standard of a

firm increases to a very high value, but that of its competitor is low, the former firm will not

be able to afford the high associated cost with decreasing profit, and, hence, it will produce
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no product for the demand market and will be forced to leave the market.

The above results and discussion indicate the same result, but in a much more general

supply chain network context, as found in Ronnen (1991), who, in speaking about minimum

quality standards, on page 492, noted that: “low-quality sellers can be better off ... and

high-quality sellers are worse off.” Also the computational results support the statement on

page 490 in Akerlof (1970) that “good cars may be driven out of the market by lemons.”

Moreover, our results also show that the lower the competitor’s quality level, the more

harmful the competitor is to the firm with the high minimum quality standard, as shown

in Figures 4.b and 4.c. The implications of the sensitivity analysis for policy-makers are

clear – the imposition of a one-sided quality standard can have a negative impact on the

firm in one’s region (or country). Moreover, policy-makers, who are concerned about the

products at particular demand markets, should prevent firms located in regions with very

low minimum quality standards from entering the market; otherwise, they may not only

bring the average quality level at the demand market(s) down and hurt the consumers, but

such products may also harm the profits of the other firms with much higher quality levels

and even drive them out of the market.

Therefore, it would be beneficial and fair for both firms and consumers if the policy-makers

at the same or different regions or even countries could impose the same or at least similar

minimum quality standards on plants serving the same demand market(s). In addition, the

minimum quality standards should be such that they will not negatively impact either the

high quality firms’ survival or the consumers at the demand market(s).

Example 2

Example 2 is built from Example 1. In Example 2, there is an additional manufacturing plant

available for each of the two firms, and we assume that the new plant for each firm has the

same associated data as its original one. This would represent a scenario in which each firm

builds an identical plant in proximity to its original one. Thus, the forms of the production

cost functions associated with the new plants, M2
1 and M2

2 , and the total transportation cost

functions associated with the new links to R1 are the same as those for their counterparts

in Example 1 (but depend on the corresponding variables). This example has the topology

given in Figure 5.

The data associated with the new plants are as below.

The production cost functions at the new manufacturing plants, M2
1 and M2

2 , are:

f̂12(Q121, q12) = 0.8Q2
121 + 0.5Q121 + 0.25Q121q12 + 0.5q2

12, (43)
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Figure 5: The Supply Chain Network Topology for Examples 2 and 3

f̂22(Q221, q22) = Q2
221 + 0.8Q221 + 0.3Q221q22 + 0.65q2

22. (44)

The total transportation cost functions on the new links are:

ĉ121(Q121, q12) = 1.2Q2
121 + Q121 + 0.25Q221 + 0.25q2

12, (45)

ĉ221(Q221, q22) = Q2
221 + Q221 + 0.35Q121 + 0.3q2

22. (46)

The demand price function retains its functional form, but with the new potential ship-

ments added so that:

ρ̂1 = 2250− (Q111 + Q211 + Q121 + Q221) + 0.8q̂1, (47)

with the average quality at R1 expressed as:

q̂1 =
Q111q11 + Q211q21 + Q121q12 + Q221q22

Q111 + Q211 + Q121 + Q211

. (48)

Also, at the new manufacturing plants we have that, as in the original ones:

q
12

= q
22

= 0.

The Euler method converges in 408 iterations to the following equilibrium solution. The

equilibrium product shipments are:

Q∗111 = 225.96, Q∗121 = 225.96, Q∗211 = 225.54, Q∗221 = 225.54.

The equilibrium demand at R1 is, hence, d∗1 = 903.
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The equilibrium quality levels are:

q∗11 = 22.65, q∗12 = 22.65, q∗21 = 11.83, q∗22 = 11.83,

with the average quality level, q̂1, now equal to 17.24. Note that the average quality level

has dropped precipitously from its value of 24.68 in Example 1.

The incurred demand market price at R1 is:

ρ̂1 = 1, 360.78.

The profits of the firms are, respectively, 406,615.47 and 407,514.97.

We now discuss the results. Since, for each firm, its new manufacturing plant and the

original one are assumed to be identical, the equilibrium product shipments and the quality

levels associated with the two plants are identical for each firm.

The availability of an additional manufacturing plant for each firm leads to the following

results. First, the total cost of manufacturing and transporting the same amount of products

is now less than in Example 1 for each firm, which can be verified by substituting Q111 +Q121

for Q111 and Q211 + Q221 for Q211 in (37) - (40) and comparing the total cost of each firm

in Example 1 with that in Example 2. Hence, although the product shipments produced by

the same manufacturing plant decrease in comparison to the associated values in Example 1,

the total amount supplied by each firm increases, as does the total demand. The strategy of

building an identical plant at the same location as the original one appears to be cost-wise

and profitable for the firms; however, at the expense of a decrease in the average quality

level at the demand market, as reflected in the results for Example 2. Policy-makers may

wish to take note of this.

The Jacobian matrix of F (X) = −∇U(Q, q), J(Q111, Q121, Q211, Q221, q11, q12, q21, q22),

and evaluated at X∗ for Example 2, is

J(Q111, Q121, Q211, Q221, q11, q12, q21, q22)

=



5.99 1.99 1.00 1.00 −0.25 −0.10 −0.10 −0.10
1.00 6.00 1.00 1.00 −0.10 −0.25 −0.10 −0.10
1.00 1.00 6.00 2.01 −0.10 −0.10 −0.20 −0.10
1.00 1.00 2.00 6.00 −0.10 −0.10 −0.10 −0.20
−0.25 −0.10 0.10 0.10 1.50 0 0 0
−0.10 −0.25 0.10 0.10 0 1.50 0 0
0.10 0.10 −0.20 −0.10 0 0 1.90 0
0.10 0.10 −0.10 −0.20 0 0 0 1.90


.
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We note that the Jacobian matrix for this example is strictly diagonally dominant, which

guarantees its positive-definiteness. Thus, the equilibrium solution X∗ is unique, the con-

ditions for convergence of the algorithm are also satisfied, and the equilibrium solution is a

strictly monotone attractor. Moreover, X∗ is exponentially stable.

Example 3

Example 3 is constructed from Example 2, but now the new plant for Firm 1, M2
1 , is located

in a country where the production cost is much lower but the total transportation cost to

the demand market R1 is higher, in comparison to the data in Example 2. In addition, the

location of the second plant of Firm 2, M2
2 , also changes, resulting in both a higher production

cost and a higher transportation cost to R1. Thus, the new manufacturing plants for each

firm now have different associated cost functions as given below.

The production cost functions of the new plants, M2
1 and M2

2 , are:

f̂12(Q121, q12) = 0.3Q2
121 + 0.1Q121 + 0.3Q121q12 + 0.4q2

12,

f̂22(Q221, q22) = 1.2Q2
221 + 0.5Q221 + 0.3Q221q22 + 0.5q2

22.

The total transportation cost functions on the new links are now:

ĉ121(Q121, q12) = 1.8Q2
121 + Q121 + 0.25Q221 + 0.25q2

12,

ĉ221(Q221, q22) = 1.5Q2
221 + 0.8Q221 + 0.3Q121 + 0.3q2

22.

The Euler method converges in 498 iterations, yielding the equilibrium product shipments:

Q∗111 = 232.86, Q∗121 = 221.39, Q∗211 = 240.82, Q∗221 = 178.45,

with an equilibrium demand d∗1 = 873.52. The equilibrium quality levels are:

q∗11 = 25.77, q∗12 = 19.76, q∗21 = 10.64, q∗22 = 9.37,

with the average quality level at R1, q̂1, equal to 16.73. The incurred demand market price

is

ρ̂1 = 1, 389.86.

The profits of the firms are, respectively, 415,706.05 and 378,496.95,

Although the production cost of Firm 1’s foreign plant, M2
1 , is lower than that of the

original plant, M1
1 , because of the high transportation cost to the demand market, the
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quantity produced at and shipped from M2
1 decreases, in comparison to the value in Example

2. In addition, because of the higher manufacturing cost at Firm 2’s foreign plant, M2
2 , the

total supply of the product from Firm 2 now decreases. The other results are: the demand

at demand market R1 decreases and the average quality there decreases slightly.

The Jacobian matrix of F (X) = −∇U(Q, q) at equilibrium, denoted by J(Q111, Q121, Q211,

Q221, q11, q12, q21, q22), for this example, is

J(Q111, Q121, Q211, Q221, q11, q12, q21, q22)

=



5.99 1.99 1.01 1.01 −0.27 −0.10 −0.11 −0.08
1.99 6.20 1.00 1.00 −0.10 −0.21 −0.11 −0.08
0.99 1.00 6.01 2.01 −0.11 −0.11 −0.20 −0.08
0.99 1.00 2.01 7.41 −0.11 −0.11 −0.11 −0.17
−0.27 −0.10 0.11 0.11 1.50 0 0 0
−0.10 −0.21 0.11 0.11 0 1.30 0 0
0.11 0.11 −0.20 −0.11 0 0 1.90 0
0.08 0.08 −0.08 −0.17 0 0 0 1.60


.

This Jacobian matrix is strictly diagonally dominant, and, hence, it is positive-definite.

Thus, the uniqueness of the computed equilibrium is guaranteed. Also, the conditions for

convergence of the algorithm are satisfied. The equilibrium solution for Example 3 has the

same qualitative properties as the solution to Example 2.

Example 4
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Figure 6: The Supply Chain Network Topology for Example 4

Example 4 considers the following scenario. Please refer to Figure 6 for the supply chain

network topology for this example. There is a new demand market, R2, added to Example 3,

which is located closer to both firms’ manufacturing plants than the original demand market
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R1. The total transportation cost functions for transporting the product to R2 for both

firms, respectively, are:

ĉ112(Q112, q11) = 0.8Q2
112 + Q112 + 0.2Q212 + 0.05q2

11, (49)

ĉ122(Q122, q12) = 0.75Q2
122 + Q122 + 0.25Q222 + 0.03q2

12, (50)

ĉ212(Q212, q21) = 0.6Q2
212 + Q212 + 0.3Q112 + 0.02q2

21, (51)

ĉ222(Q222, q22) = 0.5Q2
222 + 0.8Q222 + 0.25Q122 + 0.05q2

22. (52)

The production cost functions at the manufacturing plants have the same functional forms

as in Example 3, but now they include the additional shipments to the new demand market,

R2, that is:

f̂12(Q121, Q122, q12) = 0.3(Q121 + Q122)
2 + 0.1(Q121 + Q122) + 0.3(Q121 + Q122)q12 + 0.4q2

12,

f̂22(Q221, Q222, q22) = 1.2(Q221 + Q222)
2 + 0.5(Q221 + Q222) + 0.3(Q221 + Q222)q22 + 0.5q2

22.

f̂11(Q111, Q112, q11) = 0.8(Q111 + Q112)
2 + 0.5(Q111 + Q112) + 0.25(Q111 + Q112)q11 + 0.5q2

11,

f̂21(Q211, Q212, q21) = (Q211 + Q212)
2 + 0.8(Q211 + Q212) + 0.3(Q211 + Q212)q21 + 0.65q2

21.

In addition, consumers at the new demand market R2 are more sensitive to the quality of

the product than consumers at the original demand market R1. The demand price functions

for both the demand markets are, respectively:

ρ̂1 = 2250− (Q111 + Q211 + Q121 + Q221) + 0.8q̂1,

ρ̂2 = 2250− (Q112 + Q122 + Q212 + Q222) + 0.9q̂2,

where

q̂1 =
Q111q11 + Q211q21 + Q121q12 + Q221q22

Q111 + Q211 + Q121 + Q211

,

and

q̂2 =
Q112q11 + Q212q21 + Q122q12 + Q222q22

Q112 + Q212 + Q122 + Q222

.

The Euler method converges in 597 iterations, and the equilibrium solution is as below.

The equilibrium product shipments are:

Q∗111 = 208.70, Q∗121 = 211.82, Q∗211 = 203.90, Q∗221 = 129.79,

Q∗112 = 165.39, Q∗122 = 352.11, Q∗212 = 182.30, Q∗222 = 200.05.
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The equilibrium demand at the two demand markets is now d∗1 = 754.21 and d∗2 = 899.85.

The equilibrium quality levels are:

q∗11 = 53.23, q∗12 = 79.08, q∗21 = 13.41, q∗22 = 13.82.

The value of q̂1 is 42.94 and that of q̂2 is 46.52.

The incurred demand market prices are:

ρ̂1 = 1, 530.15, ρ̂2 = 1, 392.03.

The profits of the firms are, respectively, 882,342.15 and 651,715.83.

Due to the addition of R2, which has associated lower transportation costs, each firm

ships more product to demand market R2 than to R1, and, at the same time, some of the

previous demand at R1 is shifted to R2. Hence, the total demand d1 + d2 is now 88.76%

larger than the total demand d1 in Example 2.

In addition, Firm 1 is the one with larger market shares, and is able to achieve higher

profit by attaining higher quality levels. Thus, as the total demand increases, the quality

levels of Firm 1 increase significantly. However, since it is not cost-wise for Firm 2 to do so,

due to its higher costs and lower market shares, Firm 2 prefers a “free ride” from Firm 1

with its quality levels basically remaining the same. The average quality levels, nevertheless,

increase substantially anyway, which leads to the increase in the prices and both firms’

profits.

The Jacobian matrix of −∇U(Q, q), for Example 4, evaluated at the equilibrium, and

denoted by J(Q111, Q121, Q211, Q221, Q112, Q122, Q212, Q222, q11, q12, q21, q22), is

J(Q111, Q121, Q211, Q221, Q112, Q122, Q212, Q222, q11, q12, q21, q22)

=



5.99 1.98 1.02 1.02 1.60 0 0 0 −0.29 −0.10 −0.10 −0.06
1.98 6.17 1.04 1.04 0 0.60 0 0 −0.10 −0.25 −0.10 −0.06
0.98 0.96 6.03 2.03 0 0 2.00 0 −0.12 −0.13 −0.17 −0.08
0.98 0.96 2.03 7.43 0 0 0 2.40 −0.12 −0.13 −0.12 −0.13
1.60 0 0 0 5.19 1.98 1.02 1.02 −0.34 −0.15 −0.08 −0.09
0 0.60 0 0 1.98 4.07 1.03 1.03 −0.07 −0.37 −0.08 −0.09
0 0 2.00 0 0.98 0.97 5.24 2.04 −0.10 −0.20 −0.19 −0.12
0 0 0 2.40 0.98 0.97 2.04 5.44 −0.10 −0.20 −0.10 −0.20

−0.29 −0.10 0.12 0.12 −0.34 −0.07 0.10 0.10 1.60 0 0 0
−0.10 −0.25 0.13 0.13 −0.15 −0.37 0.20 0.20 0 1.36 0 0
0.10 0.10 −0.17 −0.12 0.08 0.08 −0.19 −0.10 0 0 1.94 0
0.06 0.06 −0.08 −0.13 0.09 0.09 −0.12 −0.20 0 0 0 1.70


.

The eigenvalues of 1
2
(J + JT ) are all positive and are: 1.29, 1.55, 1.66, 1.71, 1.93, 2.04,

3.76, 4.73, 6.14, 7.55, 8.01, and 11.78. Therefore, both the uniqueness of the equilibrium
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solution and the conditions for convergence of the algorithm are guaranteed. The equilibrium

solution to Example 4 is a strictly monotone attractor and is exponentially stable.

Sensitivity Analysis

We now explore the impact of the firms’ proximity to the second demand market R2. We

multiply the coefficient of the second Qijk term, that is, the linear one, in each of the

transportation cost functions ĉijk (49) – (52) by a positive factor β, but retain the other

transportation cost functions as in Example 4. We vary β from 0 to 50, 100, 150, 200, 250,

300, and 350. The results are reported in Figure 7.

As β increases, that is, as R2 is located farther, the transportation costs to R2 increase.

In order to decrease their total costs and increase their profits, firms ship less of the product

to R2 while their shipments to R1 increase, as shown in Figure 7.a. In addition, at the

same time, firms cannot afford higher quality as the total costs of both firms increase, so the

average quality levels at both demand markets decrease, as indicated in Figure 7.b. Due to

the changes in the demands and the average quality levels, the price at R1 decreases, but

that at R2 increases, and the profits of both firms decrease, as in Figures 7.c and 7.d. When

β = 350, demand market R2 will be removed from the supply chain network, due to the

demand there dropping to zero. Thus, when β = 350, the results of Example 4 are the same

as those for Example 3.

The numerical examples in this Section, along with the sensitivity analysis results, reveal

the type of questions that can be explored and addressed through computations. Moreover,

the analyses demonstrate the impacts of minimum quality standards even “across borders”

as well as the importance of the location of manufacturing plants vis a vis the demand

markets. The insights gained from the numerical examples are useful to firms, to consumers

at demand markets, as well as to policy-makers.
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Figure 7: The Equilibrium Demands, Average Quality Levels, Prices at the Demand Markets,
and the Profits of the Firms as β Varies in Example 4
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6. Summary and Conclusions

In this paper, we developed a rigorous framework for the modeling, analysis, and com-

putation of solutions to competitive supply chain network problems in static and dynamic

settings in which there is information asymmetry in quality. We also demonstrated how our

framework can capture the inclusion of policy interventions in the form of minimum quality

standards.

This research adds to the literature on information asymmetry with imperfect competi-

tion, which has only recently garnered attention, and which has focused on analytical results

for stylized problems. It also contributes to the literature on supply chains with quality com-

petition and reveals the spectrum of insights that can be obtained through computations,

supported by theoretical analysis. Finally, it contributes to the integration of economics

with operations research and the management sciences.

In future research, we plan on exploring issues and applications of information asymme-

try in quality in various imperfectly competitive environments, including those arising in

healthcare settings. We also intend to assess the value of product differentiation for both

producers and consumers alike and the role that minimum quality standards can play in

such settings.
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