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Abstract: This paper first develops a multitiered supply chain network equilibrium model

with fixed demands and proves that the governing equilibrium conditions satisfy a finite-

dimensional variational inequality. The paper then establishes that the static supply chain

network model with its governing equilibrium conditions can be reformulated as a trans-

portation network equilibrium model over an appropriately constructed abstract network

or supernetwork. This identification provides a new interpretation of equilibrium in supply

chain networks with fixed demands in terms of path flows. The equivalence is then further

exploited to construct a dynamic supply chain network model with time-varying demands

(and flows) using an evolutionary (time-dependent) variational inequality formulation. Re-

cent theoretical results in the unification of projected dynamical systems and evolutionary

variational inequalities are presented and then applied to formulate dynamic numerical sup-

ply chain network examples and to compute the curves of equilibria. An example with

step-wise time-dependent demand is also given for illustration purposes.
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1. Introduction

Transportation science has pushed the frontiers in the development and application of

rigorous methodologies for the modeling, analysis, and solution of complex network-based

problems in which humans interact with critical infrastructure as well as with available tech-

nologies. Seminal contributions have been made by numerous authors. Beckmann, McGuire,

and Winsten (1956) first rigorously mathematically formulated the traffic assignment or

transportation network equilibrium problem and showed that the equilibrium conditions in

which no user has any incentive to alter his route of travel coincided with the Kuhn-Tucker

conditions of an appropriately constructed optimization problem. Dafermos and Sparrow

(1969), subsequently, coined the terms “user-optimization” and “system-optimization” to

distinguish between solutions corresponding to, respectively, Wardrop’s (1952) first and sec-

ond principles of travel behavior and also provided algorithms that exploited the network

structure. Dafermos (1980) identified the Smith (1979) formulation of transportation net-

work equilibrium as a finite-dimensional variational inequality, an identification that revo-

lutionized the modeling of a spectrum of network equilibrium problems and applications in

different disciplines. For an overview of the impact of the Beckmann, McGuire, and Winsten

(1956) book, see the paper by Boyce, Mahmassani, and Nagurney (2005). For an overview

of finite-dimensional variational inequalities and network-based applications, see the book

by Nagurney (1999) and the references therein.

Transportation science has also spearheaded the development of mathematical frame-

works to capture disequilibrium behavior associated with the dynamics of users engaged in

selecting their routes of travel between origins and destinations. For example, projected dy-

namical systems theory (cf. Dupuis and Nagurney (1993) and Nagurney and Zhang (1996)

and the references therein) was developed, in part, in order to model the behavior of travelers

prior to the achievement of an equilibrium state as formulated by a variational inequality

problem. The book by Ran and Boyce (1996) contains an overview of dynamic transporta-

tion network models and algorithms, along with references to the literature to that date.

Formulations of dynamic models of multilayer networks can be found in Nagurney and Dong

(2002) and in Zhang, Peeta, and Friesz (2005).

Recently, Cojocaru, Daniele, and Nagurney (2005) built the basis for the merging of pro-
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jected dynamical systems and that of evolutionary (time-dependent) variational inequalities

(which are infinite-dimensional). These two theories had been developed and advanced in

parallel, in order to further develop the theoretical analysis and computation of solutions to

problems, often, network-based, in which dynamics plays a central role. Cojocaru, Daniele,

and Nagurney (2006) demonstrated that the merger of these two theories allows for the

modeling of problems that present two theoretically distinct timeframes. They provided the

formulation of the associated double-dynamics theory, discussed the question of uniqueness

of such curves of equilibria, and also provided conditions for stability properties of such

curves in a given neighborhood.

In this paper, we focus on the interplay of transportation network equilibrium models

and supply chain network problems and we demonstrate how theory derived from the former

class of problems can be used to provide entirely new interpretations of the latter as well

as to inform a new kind of time-dependent modeling framework, which is motivated by the

unification of projected dynamical systems theory and evolutionary variational inequalities.

This paper is organized as follows. In Section 2, we present the multitiered supply chain

network equilibrium model with fixed demands, which is motivated by the supply chain

network equilibrium model proposed by Nagurney, Dong, and Zhang (2002). In Section

3, we then recall the fixed demand transportation network equilibrium model of Dafermos

(1980) and Smith (1979), along with the path-based and link-based variational inequality

formulations, which are finite-dimensional. In Section 4, we establish that the supply chain

network equilibrium model of Section 2 can be reformulated as a transportation network

equilibrium model as described in Section 3, over an appropriately constructed abstract

network or supernetwork (cf. Nagurney and Dong (2002) and the references therein). A

similar equivalence was made by Nagurney (2006) for the case of elastic demands.

In Section 4, we utilize the recently developed unification of the theories of projected

dynamical systems and evolutionary variational inequalities to construct a dynamic supply

chain network model with time-dependent demands, which is viewed as a dynamic trans-

portation network problem. We also provide some theoretical results. In Section 5, we

discuss the computation of curves of equilibria and we illustrate the modeling framework

through several numerical dynamic supply chain numerical examples, including one with a

step-wise demand function.
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Figure 1: The Network Structure of the Supply Chain

2. The Supply Chain Network Model with Fixed Demands

In this Section, we develop a fixed demand version of the supply chain network model

proposed in Nagurney, Dong, and Zhang (2002). The model consists of m manufacturers, n

retailers, and o demand markets, as depicted in Figure 1. We denote a typical manufacturer

by i, a typical retailer by j, and a typical demand market by k. The links in the supply chain

network represent transportation/transaction links. The majority of the needed notation is

shown in Table 1. The equilibrium solution is denoted by “∗”. All vectors are assumed to

be column vectors, except where noted.

The top-tiered nodes in Figure 1 represent the manufacturers, who produce a homoge-

neous product and sell to the retailers in the second tier. The consumers at the demand

markets are represented by the nodes in the bottom tier of the supply chain network and

they acquire the product from the retailers.
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Table 1: Notation for the Supply Chain Network Equilibrium Model

Notation Definition
q vector of the manufacturers’ production outputs with components:

q1, . . . , qm

Q1 mn-dimensional vector of product flows transacted/shipped between
manufacturers and retailers with component ij: qij

Q2 no-dimensional vector of product flows transacted/shipped between
retailers and the demand markets with component jk: qjk

γ n-dimensional vector of shadow prices associated with the retailers
with component j: γj

d o-dimensional vector of market demand with component k: dk

fi(q) ≡ fi(Q
1) production cost of manufacturer i with marginal production cost

with respect to qi:
∂fi

∂qi
and the marginal production cost with

respect to qij:
∂fi(Q

1)
∂qij

cij(qij) transaction cost between manufacturer i and retailer j with marginal

transaction cost: ∂cij(qij)

∂qij

s vector of the retailers’ supplies of the product with components:
s1, . . . , sn

cj(s) ≡ cj(Q
1) handling cost of retailer j with marginal handling cost with respect

to sj:
∂cj

∂sj
and with the marginal handling cost with respect to qij:

∂cj(Q1)

∂qij

cjk(Q
2) unit transaction cost between retailer j and demand market k
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We first describe the behavior of the manufacturers and the retailers. We then discuss the

behavior of the consumers at the demand markets. Finally, we state the equilibrium condi-

tions for the supply chain network and provide the finite-dimensional variational inequality

governing the equilibrium.

2.1 The Behavior of the Manufacturers and their Optimality Conditions

Let ρ∗
1ij denote the price charged for the product by manufacturer i in transacting with

retailer j. The price ρ∗
1ij is an endogenous variable and will be determined once the entire

supply chain network equilibrium model is solved. We assume that the quantity produced

by manufacturer i must satisfy the following conservation of flow equation:

qi =
n∑

j=1

qij, (1)

which states that the quantity of the product produced by manufacturer i is exactly equal

to the sum of the quantities transacted/shipped between a manufacturer and the retailers.

The production cost function fi for each manufacturer i; i = 1, . . . , m, as delineated in Table

1, can, in view of (1), be reexpressed as a function of the flows Q1.

Hence, assuming that the manufacturers are profit-maximizers, we can express the opti-

mization problem faced by manufacturer i as:

Maximize
n∑

j=1

ρ∗
1ijqij − fi(Q

1) −
n∑

j=1

cij(qij), (2)

subject to: qij ≥ 0, for all j; j = 1, . . . , n.

The first term in (2) represents the revenue and the subsequent two terms the production

cost and the transaction costs, respectively, for manufacturer i.

We assume that the manufacturers compete in a noncooperative manner in the sense of

Cournot (1838) and Nash (1950, 1951), and the production cost functions and the transac-

tion cost functions for each manufacturer are continuously differentiable and convex. The

optimality conditions for all manufacturers i; i = 1, . . . , m, simultaneously, can then be

expressed as the following variational inequality (cf. Nagurney, Dong and Zhang (2002),
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Bazaraa, Sherali, and Shetty (1993), Gabay and Moulin (1980); see also Dafermos and

Nagurney (1987) and Nagurney (1999)): determine Q1∗ ∈ Rmn
+ satisfying:

m∑

i=1

n∑

j=1

[
∂fi(Q

1∗)

∂qij
+

∂cij(q
∗
ij)

∂qij
− ρ∗

1ij

]
×

[
qij − q∗ij

]
≥ 0, ∀Q1 ∈ Rmn

+ . (3)

2.2 The Behavior of the Retailers and their Optimality Conditions

The retailers, in turn, purchase the product from the manufacturers and transact with

the consumers at the demand markets. Thus, a retailer is involved in transactions both with

the manufacturers as well as with the demand markets.

Let ρ∗
2j denote the price charged by the retailer j for the product. This price will be

determined endogenously after the the model is solved. We assume that the retailers are

also profit-maximizers and, hence, the optimization problem faced by a retailer j is given

by:

Maximize
o∑

k=1

ρ∗
2jqjk − cj(Q

1) −
m∑

i=1

ρ∗
1ijqij (4)

subject to:
o∑

k=1

qjk ≤
m∑

i=1

qij, (5)

and the nonnegativity constraints: qij ≥ 0, and qjk ≥ 0, for all i; i = 1, . . . , m, and k;

k = 1, . . . , o.

The first term in the objective function (4) represents the revenue whereas the second and

third terms represent, respectively, the handling cost and the payout to the manufacturers.

Constraint (5) expresses that the total quantity of the product transacted with the demand

markets by a retailer cannot exceed the total amount that the retailer has obtained from the

manufacturers.

We assume that the retailers also compete in a noncooperative manner and that the

handling cost for each retailer is continuously differentiable and convex. Then the optimality

conditions for all the retailers simultaneously can be expressed as the variational inequality:
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determine (Q1∗, Q2∗, γ∗) ∈ Rmn+no+n
+ satisfying:

m∑

i=1

n∑

j=1

[
∂cj(Q

1∗)

∂qij

+ ρ∗
1ij − γ∗

j

]
×

[
qij − q∗ij

]
+

n∑

j=1

o∑

k=1

[
−ρ∗

2j + γ∗
j

]
×

[
qjk − q∗jk

]

+
n∑

j=1

[
m∑

i=1

q∗ij −
o∑

k=1

q∗jk

]
×

[
γj − γ∗

j

]
≥ 0, ∀(Q1, Q2, γ) ∈ Rmn+no+n

+ . (6)

As noted in Table 1, the term γj is the Lagrange multiplier/shadow price associated with

constraint (5) for retailer j and γ is the n-dimensional vector of all the shadow prices.

2.3 The Consumers at the Demand Markets and the Equilibrium Conditions

We now discuss the behavior of the consumers at the demand markets. The consumers

take into account the prices charged by the retailers and the unit transaction costs incurred

to obtain the product in making their consumption decisions. In the static model, we assume

that the demand for the product at each demand market is fixed and known (later in this

paper, we will develop the dynamic model in which we allow the demand to be time-varying).

Hence, the following conservation of flow equations must hold:

dk =
n∑

j=1

qjk, k = 1, . . . , o, (7)

where dk is fixed for each demand market k.

We assume that the unit transaction cost functions cjk are continuous functions for j;

j = 1, . . . , n and k; k = 1, . . . , o, and are of the form given in Table 1.

The equilibrium conditions for consumers at demand market k then take the form: for

each retailer j; j = 1, ..., n:

ρ∗
2j + cjk(Q

2∗)

{
= ρ∗

3k, if q∗jk > 0,
≥ ρ∗

3k, if q∗jk = 0.
(8)

Conditions (8) state that, in equilibrium, if the consumers at demand market k pur-

chase the product from retailer j, then the price the consumers pay is exactly equal to the

price charged by the retailer plus the unit transaction cost. However, if the sum of the
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price charged by the retailer and the unit transaction cost exceeds the price that the con-

sumers are willing to pay at the demand market, there will be no transaction between this

retailer/demand market pair. In equilibrium, condition (8) must hold simultaneously for all

demand markets. We can express these equilibrium conditions as the following variational

inequality: determine Q2∗ ∈ K1, such that

n∑

j=1

o∑

k=1

[
ρ∗

2j + cjk(Q
2∗)

]
× [qjk − q∗jk] ≥ 0, ∀Q2 ∈ K1, (9)

where K1 ≡ {Q2|Q2 ∈ Rno
+ and (7) holds}.

In Nagurney, Dong, and Zhang (2002), it was assumed that the demand functions asso-

ciated with the demand markets were elastic and depended upon the prices of the product

at the demand markets. Nagurney (2006), subsequently, proved that the elastic demand

supply chain network equilibrium model could be reformulated as an elastic demand trans-

portation network equilibrium model (cf. Dafermos and Nagurney (1984); see also Fisk and

Boyce (1983)) over an appropriately constructed supernetwork. That paper, however, did

not introduce any dynamics.

2.4 The Equilibrium Conditions of the Supply Chain

In equilibrium, the optimality conditions of all the manufacturers, the optimality condi-

tions of all the retailers, and the equilibrium conditions for all the demand markets must

be simultaneously satisfied so that no decision-maker has any incentive to alter his transac-

tions. We now formally state the equilibrium conditions for the entire supply chain network

as follows.

Definition 1: Supply Chain Network Equilibrium (Fixed Demands)

The equilibrium state of the supply chain network with fixed demands is one where the flows

of the product between the tiers of the decision-makers coincide and the flows and prices

satisfy the sum of conditions (3), (6), and (9).

We now state and prove:
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Theorem 1: Variational Inequality Formulation of the Supply Chain Network

Equilibrium

The equilibrium conditions governing the supply chain network according to Definition 1 co-

incide with the solution of the (finite-dimensional) variational inequality given by: determine

(Q1∗, Q2∗, γ∗)∈K2 satisfying:

m∑

i=1

n∑

j=1

[
∂fi(Q

1∗)

∂qij
+

∂cij(q
∗
ij)

∂qij
+

∂cj(Q
1∗)

∂qij
− γ∗

j

]
×

[
qij − q∗ij

]

+
n∑

j=1

o∑

k=1

[
cjk(Q

2∗) + γ∗
j

]
×

[
qjk − q∗jk

]
+

n∑

j=1

[
m∑

i=1

q∗ij −
o∑

k=1

q∗jk

]
×

[
γj − γ∗

j

]
≥ 0,

∀(Q1, Q2, γ) ∈ K2. (10)

where K2 ≡ {(Q1, Q2, γ)|(Q1, Q2, γ) ∈ Rmn+no+n
+ and (7) holds}.

Proof: We first demonstrate that an equilibrium pattern according to Definition 1 satisfies

the variational inequality (10). We sum up inequalities (3), (6), and (9), and, after algebraic

simplifications, obtain (10).

We now prove the converse, that is, a solution to variational inequality (10) satisfies the

sum of conditions (3), (6), and (9), and is, therefore, a supply chain network equilibrium

pattern according to Definition 1.

First, we add the term ρ∗
1ij − ρ∗

1ij to the first term in the first summand expression in

(10). Then, we add the term ρ∗
2j − ρ∗

2j to the first term in the second summand expression

in (10). Because these terms are all equal to zero, they do not change (10) and we obtain

the following inequality:

m∑

i=1

n∑

j=1

[
∂fi(Q

1∗)

∂qij
+

∂cij(q
∗
ij)

∂qij
+

∂cj(Q
1∗)

∂qij
− γ∗

j + ρ∗
1ij − ρ∗

1ij

]
×

[
qij − q∗ij

]

+
n∑

j=1

o∑

k=1

[
cjk(Q

2∗) + γ∗
j + ρ∗

2j − ρ∗
2j

]
×

[
qjk − q∗jk

]

+
n∑

j=1

[
m∑

i=1

q∗ij −
o∑

k=1

q∗jk

]
×

[
γj − γ∗

j

]
≥ 0, ∀(Q1, Q2, γ) ∈ K2, (11)
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which can be rewritten as:

m∑

i=1

n∑

j=1

[
∂fi(Q

1∗)

∂qij
+

∂cij(q
∗
ij)

∂qij
− ρ∗

1ij

]
×

[
qij − q∗ij

]

m∑

i=1

n∑

j=1

[
∂cj(Q

1∗)

∂qij
+ ρ∗

1ij − γ∗
j

]
×

[
qij − q∗ij

]
+

n∑

j=1

o∑

k=1

[
−ρ∗

2j + γ∗
j

]
×

[
qjk − q∗jk

]

+
n∑

j=1

[
m∑

i=1

q∗ij −
o∑

k=1

q∗jk

]
×

[
γj − γ∗

j

]

+
n∑

j=1

o∑

k=1

[
ρ∗

2j + cjk(Q
2∗)

]
× [qjk − q∗jk] ≥ 0, ∀(Q1, Q2, γ) ∈ K2. (12)

Clearly, (12) is equal to the sum of the optimality conditions (3) and (6), and the equi-

librium conditions (9) and is, hence, a variational inequality governing the supply chain

network equilibrium according to Definition 1. 2

The variational inequality (10) is different from the variational inequality formulation of

elastic demand supply chain network equilibrium problems derived by Nagurney, Dong, and

Zhang (2002), as expected, since the feasible set is different and we do not have demand

functions, but, rather, we now assume fixed demands.

At the end of Section 4, we describe how to recover the nodal prices in the supply

chain network with fixed demands consisting of the top tier prices: ρ∗
1ij; for i = 1, . . . , m;

j = 1, . . . , n; the middle tier prices: ρ∗
2j; j = 1, . . . , n, and the demand market prices: ρ∗

3k;

k = 1, . . . , o. The nodal prices of the supply chain network guarantee that the optimality

conditions (3), (6), and the equilibrium conditions (8) hold separately at the solution of the

variational inequality (10).

The following corollary establishes that, in equilibrium, the supply chain structure is as

in Figure 1. Of course, links that have equilibrium flows of zero can, in effect, be eliminated

from the supply chain network. This corollary is also useful in establishing the equivalence of

the supply chain network equilibrium problem with fixed demands with the transportation

network equilibrium problem with fixed demands over an appropriately constructed abstract

network or supernetwork, as we demonstrate in the next Section.
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Corollary 1

The market for the product clears for each retailer in the supply chain network equilibrium,

that is,
∑m

i=1 q∗ij =
∑o

k=1 q∗jk for j = 1, ..., n.

Proof: Clearly from (10), we know that, if γ∗
j > 0, then

∑m
i=1 q∗ij =

∑o
k=1 q∗jk holds. Now

we consider the case where γ∗
j = 0 for some retailer j. Let us examine the first terms in

inequality (10). Since we have assumed that the production cost functions, the transaction

cost functions, and the handling cost functions are convex, it is not unreasonable to further

assume that either the marginal production cost or the marginal transaction cost or the

marginal handling cost for each manufacturer/retailer pair is strictly positive at equilibrium.

Then we know that ∂fi(Q1∗)
∂qij

+
∂cij(q∗ij)

∂qij
+

∂cj(Q
1∗)

∂qij
> 0, which implies that q∗ij = 0, for all i, for

that j. It follows then from the third term in (10), that
∑o

k=1 q∗jk = 0. Hence, we have that
∑o

k=1 q∗jk = 0 =
∑m

i=1 q∗ij for any j such that γ∗
j = 0. Therefore, we conclude that the market

clears for each retailer in the supply chain equilibrium.2

Since we are interested in the determination of the equilibrium flows and prices, we can

transform constraint (5) into:

o∑

k=1

qjk =
m∑

i=1

qij, j = 1, . . . , n. (13)

Now we can define the feasible set as K3 ≡ {(Q1, Q1) ∈ Rmn+no
+ such that (13) holds}.

In addition, for notational convenience, we let

sj ≡
o∑

k=1

qjk, j = 1, . . . , n. (14)

The following results then follow immediately:

Corollary 2

A solution (Q1∗, Q2∗) ∈ K3 to the variational inequality problem:

m∑

i=1

n∑

j=1

[
∂fi(Q

1∗)

∂qij
+

∂cij(q
∗
ij)

∂qij
+

∂cj(Q
1∗)

∂qij

]
×

[
qij − q∗ij

]
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+
n∑

j=1

o∑

k=1

[
cjk(Q

2∗)
]
×

[
qjk − q∗jk

]
≥ 0, ∀(Q1, Q2) ∈ K3; (15)

equivalently, a solution (q∗, Q1∗, s∗, Q2∗) ∈ K4 to:

m∑

i=1

[
∂fi(q

∗)

∂qi

]
× [qi − q∗i ] +

m∑

i=1

n∑

j=1

[
∂cij(q

∗
ij)

∂qij

]
×

[
qij − q∗ij

]
+

n∑

j=1

[
∂cj(s

∗)

∂sj

]
×

[
sj − s∗j

]

+
n∑

j=1

o∑

k=1

[
cjk(Q

2∗)
]
×

[
qjk − q∗jk

]
≥ 0, ∀(q, Q1, s, Q2) ∈ K4, (16)

where K4≡{(q, Q1, s, Q2)|(q, Q1, s, Q2) ∈ Rm+mn+n+no
+ and (1), (7), (13), and (14), hold}, also

satisfies variational inequality (10).

Proof: We prove Corollary 2 by contradiction. In particular, we demonstrate that if (10)

is not true, then (15) does not hold. We assume that for some (Q1, Q2) ∈ K3 with γ ∈ Rn
+

that the left-hand side of (10) is less than or equal to zero, which implies that:

m∑

i=1

n∑

j=1

[
∂fi(Q

1∗)

∂qij

+
∂cij(q

∗
ij)

∂qij

+
∂cj(Q

1∗)

∂qij

]
×

[
qij − q∗ij

]

+
n∑

j=1

o∑

k=1

cjk(Q
2∗) ×

[
qjk − q∗jk

]

≤
m∑

i=1

n∑

j=1

γ∗
j

[
qij − q∗ij

]
−

n∑

j=1

o∑

k=1

γ∗
j

[
qjk − q∗jk

]
−

n∑

j=1

[
m∑

i=1

q∗ij −
o∑

k=1

q∗jk

]
×

[
γj − γ∗

j

]
. (17)

But, after algebraic simplification and the use of Corollary 1, the right-hand side of (17) is

reduced to zero. Hence, (15) cannot hold, and the conclusion follows.

We can obtain variational inequality (16) from variational inequality (15) through simple

algebraic relationships and the use of (1), (13), and (14). 2
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3. The Transportation Network Equilibrium Model with Fixed Demands

In this Section, we review the transportation network equilibrium model with fixed de-

mands, due to Smith (1979) and Dafermos (1980).

Consider a network G with the set of links L with K elements, the set of paths P with Q

elements, and the set of origin/destination (O/D) pairs W with Z elements. We denote the

set of paths connecting O/D pair w by Pw; the links by a, b, etc; the paths by p, q, etc., and

the O/D pairs by w1, w2, etc.

The flow on path p is denoted by xp and the flow on link a by fa. The travel cost

experienced by a user on a path p is denoted by Cp and the travel cost incurred on a link

a by ca. We assume that the user link cost functions are continuous. We also denote the

travel demand associated with traveling between O/D pair w by dw and the travel disutility

by λw, where dw is assumed to be fixed and known for all w.

Hence, the following conservation of flow equations must hold:

dw =
∑

p∈Pw

xp, ∀w, (18)

that is, the travel demand associated with an O/D pair must be equal to the sum of the

flows on the paths that connect that O/D pair.

The following conservation of flow equations relate the link flows to the path flows:

fa =
∑

p∈P

xpδap, ∀a ∈ L, (19)

where δap = 1, if path p contains link a, and δap = 0, otherwise. Hence, the flow on a link is

equal to the sum of the flows of paths that contain that link.

The user cost on a path is equal to the sum of user costs on links the path consists of,

which can be represented by the following:

Cp =
∑

a∈L

caδap, ∀p ∈ P, (20)

For the sake of generality, we allow the user cost on a link to depend upon the entire
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vector of link flows, denoted by f , so that

ca = ca(f), ∀a ∈ L. (21)

As established by Smith (1979) and Dafermos (1980), a path flow pattern x∗ ∈ K5,

where K5 ≡ {x|x ∈ RQ
+ and (18) holds} is said to be a transportation network equilibrium

(according to Wardrop’s first principle; see Wardrop (1952) and Beckmann, McGuire, and

Winsten (1956)), if, once established, no user has any incentive to alter his travel decisions.

The state can be expressed by the following equilibrium conditions which must hold for every

O/D pair w ∈ W and every path p ∈ Pw:

Cp(x
∗) − λ∗

w

{
= 0, if x∗

p > 0,
≥ 0, if x∗

p = 0.
(22)

Conditions (22) express that the user costs of all utilized paths joining an O/D pair are

equal and minimal. As described in Dafermos (1980) and Smith (1979) the transportation

network equilibrium pattern according to conditions (22) coincides to the following finite-

dimensional variational inequality in path flows: determine x∗ ∈ K5 such that

∑

w∈W

∑

p∈Pw

Cp(x
∗) ×

[
xp − x∗

p

]
≥ 0, ∀x ∈ K5. (23)

We now provide the standard variational inequality form of (23). In particular, we define

the function that enters the variational inequality F (x) ≡ C(x) and the feasible set K ≡ K5.

We then seek to determine x∗ ∈ K such that

〈F (x∗), x − x∗〉 ≥ 0, ∀x ∈ K,

where 〈·, ·〉 denotes the inner product in n-dimensional space where n here is equal to the

dimension of path flows, that is, Q. In Section 5, we present a dynamic version of the trans-

portation network equilibrium problem formulated as an evolutionary variational inequality

and we will use this standard form in connecting the static formulation with the dynamic

one.

We now provide the equivalent variational inequality in link flows, which will be utilized in

the demonstration of the supernetwork equivalence in Section 4. For additional background,

see the book by Nagurney (1999) and the references therein.
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Theorem 2

A link flow pattern is a transportation network equilibrium if and only if it satisfies the

variational inequality problem: determine f ∗ ∈ K6 satisfying

∑

a∈L

ca(f
∗) × (fa − f ∗

a ) ≥ 0, ∀f ∈ K6, (24)

where K6 ≡ {f ∈ RK
+ | there exists an x satisfying (18) and (19)}.

The continuity of the link cost functions and the compactness of the feasible sets K5 and

K6 guarantee the existence of solutions to both variational inequalities (23) and (24) from

the standard theory of variational inequalities (see Kinderlehrer and Stampacchia (1980)).
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Figure 2: The GS Supernetwork Representation of Supply Chain Network Equilibrium with
Fixed Demands

4. Transportation Network Equilibrium Reformulation of Supply Chain Network

Equilibrium with Fixed Demands

In this Section, we establish the supernetwork equivalence of the fixed demand supply

chain network equilibrium with a properly configured transportation network equilibrium

model as discussed in Section 3.

We consider a supply chain network as discussed in Section 2 which consists of m manu-

facturers: i = 1, . . . , m; n retailers: j = 1, . . . , n, and o demand markets: k = 1, . . . , o. The

supernetwork GS of the isomorphic transportation network equilibrium model is depicted in

Figure 2 and is constructed as follows. The supernetwork GS consists of the single origin

node 0 at the top tier, and o destination nodes at the bottom tier denoted, respectively,

by: z1, . . . , zo. Thus, there are o O/D pairs in GS denoted, respectively, by w1 = (0, z1),

. . ., wk = (0, zk),. . ., wo = (0, zo). Node 0 is connected to each second-tiered node xi, where

i = 1, . . . , m. Each second-tiered node xi, in turn, is connected to each third tiered node
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yj, where j = 1, . . . , n. Each node yj, in turn, is connected with a corresponding node y′
j

in the fourth tier by a single link. Finally, from each fourth-tiered node y′
j there are o links

emanating to the bottom tiered nodes zk. There are, hence, 1 + m + 2n + o nodes in the

supernetwork in Figure 2, K = m+mn+n+no links, Z = o O/D pairs, and Q = mo paths.

We now define the links in the supernetwork in Figure 2 and the associated flows. Let ai

denote the link from node 0 to node xi with associated link flow fai
, for i = 1, . . . , m. Let aij

denote the link from node xi to node yj with associated link flow faij
for i = 1, . . . , m and

j = 1, . . . , n. Also, let ajj′ denote the link connecting node yj with node yj′ with associated

link flow fajj′ for j; j = 1, . . . , n; and j ′; j ′ = 1, . . . , n. Finally, let aj′k denote the link joining

node yj′ with node zk for j ′ = 1′, . . . , n′ and k = 1, . . . , o and with associated link flow faj′k .

We group the {fai
} into the vector f 1; the {faij

} into the vector f 2; the {fajj′} into the

vector f 3, and the {faj′k} into the vector f 4.

Hence, a typical path in GS , pijj′k, consists of four links: ai, aij, ajj′, and aj′k. We denote

the path flow associated with path pijj′k by xpijj′k . Also, we let dwk
denote the known fixed

demand associated with O/D pair wk and we let λwk
denote the travel disutility associated

with O/D pair wk.

We assume that the link flows satisfy the conservation of flow equations (19), that is:

fai
=

n∑

j=1

n′∑

j′=1′

o∑

k=1

xpijj′k , i = 1, . . . , m, (25)

faij
=

n′∑

j′=1′

o∑

k=1

xpijj′k , i = 1, . . . , m; j = 1, . . . , n, (26)

fajj′ =
m∑

i=1

o∑

k=1

xpijj′k , j = 1, . . . , n; j ′ = 1, . . . , n, (27)

faj′k =
m∑

i=1

n∑

j=1

xpijj′k , j ′ = 1, . . . , n; k = 1, . . . , o. (28)

Also, we have that

dwk
=

m∑

i=1

n∑

j=1

n′∑

j′=1′
xijj′k, k = 1, . . . , o. (29)
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A path flow pattern induces a feasible link flow pattern if all path flows are nonnegative

and (25)–(29) are satisfied.

Given a feasible product shipment/transaction pattern for the supply chain model with

fixed demands, (q, Q1, s, Q2) ∈ K4, we may construct a feasible link flow pattern on the

network GS as follows: the link flows are defined as:

qi ≡ fai
, i = 1, . . . , m, (30)

qij ≡ faij
, i = 1, . . . , m; j = 1, . . . , n, (31)

sj ≡ fajj′ , j = 1, . . . , n; j ′ = 1, . . . , n′, (32)

qjk = faj′k , j = 1, . . . , n; j ′ = 1′, . . . , n′; k = 1, . . . , o. (33)

Note that if (q, Q1, s, Q2) is feasible then the link flow pattern constructed according to

(30) – (33) is also feasible and the corresponding path flow pattern that induces such a link

flow pattern is, hence, also feasible.

We now assign travel costs on the links of the network GS as follows: with each link ai

we assign a travel cost cai
defined by

cai
≡ ∂fi

∂qi
, i = 1, . . . , m; (34)

with each link aij we assign a travel cost caij
defined by:

caij
≡ ∂cij

∂qij
, i = 1, . . . , m; j = 1, . . . , n; (35)

and with each link jj ′ we assign a travel cost defined by

cajj′ ≡
∂cj

∂sj

, j = 1, . . . , n; j ′ = 1, . . . , n. (36)

Finally, for each link aj′k we assign a travel cost defined by

caj′k ≡ cjk, j ′ = 1, . . . , n′; k = 1, . . . , o. (37)

20



Hence, a traveler traveling on path pijj′k experiences a travel cost Cpijj′k given by

Cpijj′k = cai
+ caij

+ cajj′ + caj′k =
∂fi

∂qi
+

∂cij

∂qij
+

∂cj

∂sj
+ cjk. (38)

Also, we define the travel demands associated with the O/D pairs as follows:

dwk
≡ dk, k = 1, . . . , o (39)

and the travel disutilities:

λwk
≡ ρ3k, k = 1, . . . , o. (40)

Consequently, according to the fixed demand transportation network equilibrium condi-

tions (22), we have that, for each O/D pair wk in GS and every path connecting the O/D

pair wk, the following conditions must hold:

Cpijj′k − λ∗
wk

=
∂fi

∂qi
+

∂cij

∂qij
+

∂cj

∂qj
+ cjk − λ∗

wk

{
= 0, if x∗

pijj′k
> 0,

≥ 0, if x∗
pijj′k

= 0,
(41)

where
∑

p∈Pwk

x∗
pijj′k

= dwk
. (42)

We now provide the variational inequality formulation of the equilibrium conditions (41)

in link form as in (24). A link flow pattern f ∗ ∈ K6 is an equilibrium according to (41), if

and only if it satisfies:

m∑

i=1

cai
(f 1∗) × (fai

− f ∗
ai

) +
m∑

i=1

n∑

j=1

caij
(f 2∗) × (faij

− f ∗
aij

)

+
n∑

j=1

n′∑

j′=1′
cajj′ (f

3∗)× (fajj′ − f ∗
ajj′

) +
n′∑

j′=1

n∑

k=1

caj′k(f
4∗)× (faj′k − f ∗

aj′k
) ≥ 0, ∀f ∈ K6, (43)

which, through expressions (30) – (33), and (34) – (37) yields:

m∑

i=1

[
∂fi(q

∗)

∂qi

]
× [qi − q∗i ] +

m∑

i=1

n∑

j=1

[
∂cij(q

∗
ij)

∂qij

]
×

[
qij − q∗ij

]
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+
n∑

j=1

[
∂cj(s

∗)

∂sj

]
×

[
sj − s∗j

]
+

n∑

j=1

o∑

k=1

[
cjk(Q

2∗)
]
×

[
qjk − q∗jk

]
≥ 0, ∀(q, Q1, s, Q2) ∈ K4. (44)

But variational inequality (44) is precisely variational inequality (16) governing the supply

chain network equilibrium with fixed demands.

Hence, we have the following result:

Theorem 3

A solution (q∗, Q1∗, s∗, Q2∗) ∈ K4 of the variational inequality (16) governing a supply chain

network equilibrium coincides with the (via (30) – (33) and (34) – (37)) feasible link flow for

the supernetwork GS constructed above and satisfies variational inequality (24); equivalently,

variational inequality (43). Hence, it is a transportation network equilibrium according to

Theorem 2.

We now describe how to recover the prices in the supply chain network with fixed de-

mands. The vector of equilibrium prices ρ∗
3 associated with the product at the demand

markets can be obtained by setting (cf. (40) and (41)): ρ∗
3k = Cpijj′k = λ∗

wk
for each demand

market k. The vector of equilibrium prices ρ∗
2 associated with retailers, in turn, can be ob-

tained by setting (cf. (8) and (37)): ρ∗
2j = λ∗

wk
− caj′k=[ρ∗

3k − cjk(Q
2∗)] for any j, k such that

q∗jk > 0. The equilibrium prices ρ∗
1ij, in turn, can be recovered by setting (cf. (3), (34), and

(35)): ρ∗
1ij=cai

+ caij
=

[
∂fi(Q

1∗)
∂qij

+
∂cij(q

∗
ij)

∂qij

]
for any i, j such that q∗ij > 0.

We now further discuss the interpretation of the supply chain network equilibrium con-

ditions. These conditions define the supply chain network equilibrium in terms of paths and

path flows, which coincide with Wardrop’s (1952) first principle of user-optimization in the

context of transportation networks over the network given in Figure 2. Thus, we have an en-

tirely new interpretation of supply chain network equilibrium in the case of known demands,

which is as follows: all used paths connecting the source node 0 and a particular destination

node have equal and minimal costs, and the cost on the utilized paths for this O/D pair is

equal to the disutility (or the demand market price) that the consumers pay.

It is worth noting that the above identification yields and yet another application that can

be formulated and solved as a transportation network equilibrium problem. For additional
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applications, including spatial price equilibrium problems and Walrasian price equilibrium

problems, see Nagurney (1999) and the references therein.

We also point out that for a relatively price-insensitive product, such as, for example,

gasoline or milk, the fixed demand assumption is, indeed, practical, and we expect that

the model will provide a good approximation. We further emphasize that the equivalence

established above between supply chain networks and transportation networks with fixed

demands provides new opportunities for further modeling enhancements. In Section 5, we

exploit this equivalence when we develop a dynamic supply chain network equilibrium model

with time-varying demand.
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5. Dynamic Supply Chain Networks with Time-Varying Demands

In this Section, we utilize the isomorphic transportation network established in Section

4 to develop a dynamic supply chain network model using an evolutionary variational in-

equality formulation. In Daniele, Maugeri, and Oettli (1998, 1999), evolutionary variational

inequalities were utilized to model time-dependent transportation equilibria (see also Ran

and Boyce (1996) and the references therein). Cojocaru, Daniele, and Nagurney (2005)

demonstrated that time-dependent transportation equilibrium problems, as well as related

dynamic spatial price equilibrium problems, and financial equilibrium problems, could be

unified under a general evolutionary variational inequality definition over a unified constraint

set. Nagurney, Liu, Cojocaru, and Daniele (2005) exploited the supernetwork equivalence

between electric power networks and transportation networks, and developed an evolution-

ary variational inequality model for time-dependent electric power generation, distribution,

and consumption. See the book by Nagurney (2006b) for additional theory and applications

of dynamic supply chains.

In this Section, we consider the nonempty, convex, closed, bounded subset of the Hilbert

space L2([0, T ] , RQ) (where T denotes the time interval under consideration and µ = constant

and very large) given by

K̂ =



x ∈ L2([0, T ] , RQ) : 0 ≤ x(t) ≤ µ a.e. in [0, T ];

∑

p∈Pw

xp(t) = dw(t), ∀w, a.e. in [0, T ]



 .

(45)

Hence, for definiteness, and greater ease in relating the discussion to the existing litera-

ture, we, without any loss of generality, consider the vector of path flows on the network at

time t to be denoted by x(t) with an individual element by xp(t) and with dw(t) denoting

the demand associated with O/D pair w at time t.

Thus, we assume that the demands, dw(t), for all O/D pairs w are time-varying which

means that the path flows will also change over time. We define:

〈〈Φ, x〉〉 =
∫ T

0
〈Φ(t), x(t)〉dt (46)

where Φ ∈ L2([0, T ] , RQ)∗ and x ∈ L2([0, T ] , RQ). Let the function F be F : K̂ →
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L2([0, T ] , RQ). We now provide the standardized form of the infinite-dimensional evolution-

ary (time-dependent) variational inequality (cf. Cojocaru, Daniele, and Nagurney (2005,

2006)): determine x∗ ∈ K̂ such that:

〈〈F (x∗), x − x∗〉〉 ≥ 0, ∀x ∈ K̂. (47)

Sufficient conditions (including monotonicity-type conditions) that guarantee the exis-

tence of a solution to (47) are discussed in Daniele, Maugeri, and Oettli (1999).

Cojocaru, Daniele, and Nagurney (2006) have established that for the case of Hilbert

spaces H (namely, L2([0, T ], RQ)) the following infinite-dimensional projected dynamical

systems (PDS) can be related to the evolutionary variational inequality (EVI) (47) as follows:

dx(t, τ)

dτ
= ΠK̂(x(t, τ),−F (x(t, τ))), x(t, 0) ∈ K̂, (48)

where

ΠK̂(y,−F (y)) = lim
δ→0+

PK̂((y − δF (y)) − y)

δ
, ∀y ∈ K̂, (49)

with the projection operator PK̂ : H → K̂ given by

‖PK̂(z) − z‖ = inf
y∈K̂

‖y − z‖. (50)

Dupuis and Nagurney (1993) established the relationship between a projected dynam-

ical system and a variational inequality in the case of finite dimensions. Cojocaru and

Jonker (2004), subsequently, provided the relationship of the two formulations in infinite-

dimensional Hilbert spaces. Recently, Cojocaru, Daniele, and Nagurney (2006) showed the

following:

Theorem 4

Assume that K̂ ⊆ H is non-empty, closed, and convex. Assume also that F : K̂ → H is a

pseudo-monotone vector field, that is, for every pair of points x, y ∈ K̂, we have that

〈F (x), y − x〉 =⇒ 〈F (y), y − x〉 ≥ 0,
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and that F is Lipschitz continuous, where H is a Hilbert space. Then the solutions of EVI

(47) are the same as the critical points of the projected differential equation (48), that is,

they are the functions x∗ ∈ K̂ such that

ΠK̂(x∗(t),−F (x∗(t))) = 0, (51)

and vice-versa.

Applying Theorem 4, we conclude that the solutions to the evolutionary variational in-

equality: determine x∗ ∈ K̂ such that:

∫ T

0
〈F (x∗(t)), x(t) − x∗(t)〉dt ≥ 0, ∀x ∈ K̂, (52)

coincide with the critical points of the equation:

dx(t, τ)

dτ
= ΠK̂(x(t, τ),−F (x(t, τ))), (53)

that is, the points satisfying

ΠK̂(x∗(t, τ),−F (x∗(t, τ))) ≡ 0 a.e. in [0, T ], (54)

which are apparently stationary with respect to τ .

Note that in the formulation of the infinite-dimensional PDS (53), there are two “times,”

the meaning of which is discussed in Cojocaru, Daniele, and Nagurney (2007). Intuitively, at

each moment t ∈ [0, T ], the solution of the evolutionary variational inequality (47) represents

a static state of the underlying system. As t varies over [0, T ], the static states describe one

(or more) curves of the equilibria. On the other hand, τ here is the time that describes the

dynamics of the system until it reaches one of the equilibria of the curve.

The dynamic, evolutionary variational inequality analogue of the static, finite-dimensional

variational inequality (23) is now immediate. We substitute the vector of path costs into

(47) and we obtain the evolutionary variational inequality for time-dependent transportation

network equilibria given by: determine x∗ ∈ K̂ such that:

〈〈C(x∗), x − x∗〉〉 ≥ 0, ∀x ∈ K̂, (55)
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where C is the vector of path costs.

According to Theorem 3, the supply chain network equilibrium problem with fixed de-

mands can be reformulated as a fixed demand transportation network equilibrium problem

over the supernetwork GS given in Figure 2. Hence, the evolutionary variational inequality

(55), in turn, provides us now with a dynamic version of the supply chain network model

in which the demands vary over time, where the path costs are given by (38) and these are

functions of path flows that now vary with time.

In the next Section, we illustrate the dynamic supply chain network model with concrete

numerical examples.
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6. Dynamic Numerical Supply Chain Network Examples with Computations

In this Section, we provide numerical examples in order to demonstrate how the theo-

retical results in this paper can be applied in practice. In particular, we consider numerical

supply chain network examples with time-varying demands and product flows.

To solve the associated evolutionary variational inequality, we utilize the approach set

forth in Cojocaru, Daniele, and Nagurney (2005, 2006, 2007), in which the time horizon T

is discretized and at each fixed point in time we solve the associated projected dynamical

system (cf. also Nagurney and Zhang (1996)). We have chosen the examples so that the

corresponding vector field F satisfies the requirements in Theorem 4 (see also Nagurney,

Dong, and Zhang (2002)), which we expect to be readily fulfilled in practice.

We utilized the Euler method for our numerical computations. The Euler method is in-

duced by the general iterative scheme of Dupuis and Nagurney (1993) and has been applied

by Nagurney and Zhang (1996) and Zhang and Nagurney (1997) to solve the variational

inequality problem (23) in path flows as well as to approximate the continuous time tra-

jectories associated with the corresponding projected dynamical system until the stationary

point is attained. We applied the Euler method at discrete time points over the time inter-

val T . Obviously, this procedure is correct if the continuity of the solution is guaranteed.

Continuity results for solutions to evolutionary variational inequalities, in the case where

F (x(t)) = A(t)x(t) + B(t) is a linear operator, A(t) is a continuous and positive definite

matrix in [0, T ], and B(t) is a continuous vector can be found in Barbagallo (2007). In the

examples that we present here such assumptions are fulfilled. Of course, the examples could

also be computed via the computational procedure given in Daniele, Maugeri, and Oettli

(1999) but here we utilize a time-discretization approach which also has intuitive appeal.

The Euler method was implemented in FORTRAN and the computer system used was

a Sun system at the University of Massachusetts at Amherst. The convergence criterion

utilized was that the absolute value of the path flows between two successive iterations

differed by no more than 10−5. The sequence {ατ} in the Euler method (cf. Nagurney

and Zhang (1996)) was set to: .1{1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
, . . .}. The Euler method was initialized by

distributing the demand for each O/D pair equally among the paths connecting the respective

O/D pair for each discretized point in time.
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Example 1

In the first numerical example, the supply chain network consisted of one manufacturer, three

retailers, and one demand market as depicted in Figure 3. The supernetwork representation

which allows for the transformation (as proved in Section 4) to a transportation network

equilibrium problem is given also in Figure 3. Hence, in the first numerical example (see

also Figure 2) we had that: m = 1, n = 3, n′ = 3′, and o = 1.

The notation is presented here in the form of the supply chain network model as delineated

in Table 1. We provide the complete supernetwork representation in terms of O/D pairs,

paths, etc. The translations of the equilibrium path flows, link flows, and travel disutilities

into the equilibrium flows and prices is then given, for completeness, and easy reference.

The production cost function for the manufacturer was given by:

f1(q(t)) = 2.5q1(t)
2 + 2q1(t).

The transaction cost functions faced by the manufacturer and associated with transacting

with the retailers were given by:

c11(q11(t)) = .5q11(t)
2 + 3.5q11(t), c12(q12(t)) = .5q12(t)

2 + 2.5q12(t),

c13(q13(t)) = .5q13(t)
2 + 1.5q13(t).

The operating costs of the retailers, in turn, were given by:

c1(Q
1(t)) = .5(q11(t))

2, c2(Q
1(t)) = .5(q12(t))

2, c3(Q
1(t)) = .5(q13(t))

2.

The unit transaction costs associated with transacting between the retailers and the

demand market were:

c11(Q
2(t)) = q11(t) + 1, c21(Q

2(t)) = q21(t) + 5, c31(Q
2(t)) = q31(t) + 10.

We utilized the supernetwork representation of this example depicted in Figure 3 with the

links enumerated as in Figure 3 in order to solve the problem via the Euler method. Note
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that there are 9 nodes and 10 links in the supernetwork in Figure 3. Using the procedure

outlined in Section 4, we defined O/D pair w1 = (0, z1) with the user link travel cost functions

as given in (34) – (37).

There were three paths in Pw1 denoted by: p1, p2, p3. The paths were comprised of the

following links:

p1 = (a1, a11, a11′ , a1′1), p2 = (a1, a12, a22′ , a2′1), p3 = (a1, a13, a33′ , a3′1),

The time horizon T = 1. The time-varying demand function was given by:

d1(t) = 100 + 10t.

We discretized the time horizon T as follows: t0 = 0, t1 = 1
2
, and t2 = T = 1. We report

the solutions obtained by the Euler method at each discrete time step, for which we had,

respectively, demands: d1(t0) = 100; d1(t1) = 105, and d1(T ) = 110.

Example 1: Solution at Time t = t0 = 0:

The Euler method converged and yielded the following equilibrium path flow pattern:

x∗
p1

(t0) = 34.44, x∗
p2

(t0) = 33.44, x∗
p3

(t0) = 32.12.

The corresponding equilibrium link flows (cf. also the supernetwork in Figure 3) were:

f ∗
a1

(t0) = 100.00,

f ∗
a11

(t0) = 34.44, f ∗
a12

(t0) = 33.44, f ∗
a13

(t0) = 32.12,

f ∗
a11′

(t0) = 34.44, f ∗
a22′

(t0) = 33.44, f ∗
a33′

(t0) = 32.12,

f ∗
a1′1

(t0) = 34.44, f ∗
a2′1

(t0) = 33.44, f ∗
a3′1

(t0) = 32.12.

The incurred equilibrium path travel costs (cf. (38)) were: Cp1(t0) = Cp2(t0) = Cp3(t0) =

λ∗
w1

(t0) = 609.83.
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We now provide the translations of the above equilibrium flows into the supply chain

network flow and price notation using (30), (31), (32), and (33).

The flows were:

Q1∗(t0) := q∗11(t0) = 34.44, q∗12(t0) = 33.44, q∗13(t0) = 32.12,

s∗1(t0) = 34.44, s∗2(t0) = 33.44, s∗3(t0) = 32.12,

Q2∗(t0) := q∗11(t0) = 34.44, q∗21(t0) = 33.44, q∗31(t0) = 32.12,

and the production quantity was: q∗1(t0) = 100.

The demand price at the demand market was, hence, (cf. (40)):

ρ∗
31(t0) = 609.83,

which corresponds to the travel costs on the paths (all are used) connecting the O/D pair.

It is easy to verify that the equilibrium conditions were satisfied with excellent accuracy.

Example 1: Solution at Time t = t1 = 1
2
:

The Euler method converged and yielded the following equilibrium path flow pattern:

x∗
p1

(t1) = 36.11, x∗
p2

(t1) = 35.11, x∗
p3

(t1) = 33.78.

The corresponding equilibrium link flows (cf. also the supernetwork in Figure 3) were:

f ∗
a1

(t1) = 105.00,

f ∗
a11

(t1) = 36.11, f ∗
a12

(t1) = 35.11, f ∗
a13

(t1) = 33.78,

f ∗
a11′

(t1) = 36.11, f ∗
a22′

(t1) = 35.11, f ∗
a33′

(t1) = 33.78,

f ∗
a1′1

(t1) = 36.11, f ∗
a2′1

(t1) = 35.11, f ∗
a3′1

(t1) = 33.78,

with a production quantity: q∗1(t1) = 105. The equilibrium path travel costs were now:

Cp1(t1) = Cp2(t1) = Cp3(t1) = λ∗
w1

(t1) = 639.83.
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The translations into the corresponding equilibrium supply chain flows at time t1 can

easily be done as described for time t0.

The demand price at the demand market was now:

ρ∗
31(t1) = 639.83,

which corresponds to the travel costs on the paths (all paths are again used) connecting the

O/D pair.

It is easy to verify that the equilibrium conditions were again satisfied with excellent

accuracy.

Example 1: Solution at Time t = T = 1:

We applied the Euler method to the end of the time horizon where T = 1. The Euler method

now yielded the following equilibrium path flow pattern:

x∗
p1

(T ) = 37.77, x∗
p2

(T ) = 36.77, x∗
p3

(T ) = 35.45.

The corresponding equilibrium link flows (cf. also the supernetwork in Figure 3) were:

f ∗
a1

(T ) = 110.00,

f ∗
a11

(T ) = 37.77, f ∗
a12

(T ) = 36.77, f ∗
a13

(T ) = 35.45,

f ∗
a11′

(T ) = 37.77, f ∗
a22′

(T ) = 36.77, f ∗
a33′

(T ) = 35.45,

f ∗
a1′1

(T ) = 37.77, f ∗
a2′1

(T ) = 36.77, f ∗
a3′1

(T ) = 35.45.

The translations into the corresponding equilibrium supply chain flows can be easily done

as above for time t0.

The demand price at the demand market was now:

ρ∗
31(T ) = 669.83,

which is equal to λ∗
w1

(T ) = Cp1(T ) = Cp2(T ) = Cp3(T ).
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Explicit Formulae for Example 1 for the Time-Dependent Equilibria

We now note that, due to the linearity of F in this example, as well as the separability of the

components of F , and the special structure of the topology of the supernetwork in Figure 3,

we can write down explicit formulae for the path flows over time [0, T ]. See also, Dafermos

and Sparrow (1969) who made the same observation in the context of transportation network

equilibrium problems on networks in which all paths connecting an O/D pair consisted of sin-

gle links, and the user link cost functions were linear and separable. Cojocaru, Daniele, and

Nagurney (2005, 2006) provided explicit formulae for solutions to dynamic transportation

network examples of such special topologies and cost structures.

In particular, we obtain the following formulae for the equilibrium path flows for Example

1 at each point t:

x∗
p1

(t) = 3.33t + 34.44,

x∗
p2

(t) = 3.33t + 33.44,

x∗
p3

(t) = 3.33t + 32.12,

and these formulae are valid even for T > 1, that is, outside the range [0, 1], which is of

concern here. We also have an explicit formula for the travel disutility where:

λ∗
w1

(t) = 60t + 609.83, for t ∈ [0, T ].

We now, for completeness, translate these formulae into supply chain network model

formulae (30) – (33) with time-varying flows (see also (55)). Please refer also to the super-

network in Figure 3. In particular, we have the time-dependent equilibrium supply chain

flows are given by:

q∗1(t) = f ∗
a1

(t) = x∗
p1

(t) + x∗
p2

(t) + x∗
p3

(t) = 10t + 100;

Q1∗(t) := q∗11(t) = f ∗
a11

(t) = x∗
p1

(t) = 3.33t+34.33, q∗12(t) = f ∗
a12

(t) = x∗
p2

(t) = 3.33t+33.44,

q∗13(t) = f ∗
a13

(t) = x∗
p3

(t) = 3.33t + 32.12;

s∗1(t) = f ∗
a11′

(t) = x∗
p1

(t) = 3.33t + 34.44, s∗2(t) = f ∗
22′(t) = x∗

p2
(t) = 3.33t + 33.44,

s∗3(t) = f ∗
a33′

(t) = x∗
p3

(t) = 3.33t + 32.12,
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and

Q2∗ := q∗11(t) = f ∗
a1′1

(t) = x∗
p1

(t) = 3.33t + 34.44, q∗21(t) = f ∗
a2′1

(t) = x∗
p2

(t) = 3.33t + 33.44,

q∗31(t) = f ∗
a3′1

(t) = x∗
p3

(t) = 3.33t + 32.12.

Example 2: A Numerical Supply Chain Example with Step-wise Time Varying

Demand

The second example had the same data as Example 1, except that the demand now had

a step-wise structure. The supply chain network and the supernetwork were, hence, as in

Figure 3. In particular, the demand was of the form given below on the time interval [0, T ]:

d1(t) =





s1, if 0 < t ≤ t1,
s2, if t1 < t ≤ t2,
. . . ,
sk, if tk−1 < t ≤ tk = T ,

where, in this example, we have that:

d1(t) =

{
100, if 0 < t ≤ t1 = 1

2
,

110, if t1 < t ≤ t2 = T = 1.

Such a structure may reflect, for example, a seasonable demand for a product

In this setting, we know that the equilibrium curve (solution of the evolutionary varia-

tional inequality) is a step function, with the steps given by the function d1(t), where:

x∗(t) =

{
x∗

1, if 0 < t ≤ t1 = 1
2
,

x∗
2, if t1 < t ≤ t2 = 1 = T .

Again, given the simplicity of the supernetwork topology and the cost structure, we obtain

an explicit solution:

x∗(t) = (x∗
p1

(t), x∗
p2

(t), x∗
p3

(t)) =

{
(34.44, 33.44, 32.12), if 0 < t ≤ t1 = 1

2
,

(37.77, 36.77, 35.45), if t1 < t ≤ t2 = 1 = T .

Of course, the transformation of the these equilibrium path flows into the equilibrium

link flows and the supply chain network flows can be done as was done for Example 1 since

the supernetwork topology is one and the same for Examples 1 and 2.
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Figure 4: Time-Dependent Equilibrium Path Flows for Example 1

In Figures 4 and 5 we provide the graphs of the time-dependent equilibrium path flows

for Examples 1 and 2, respectively.
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Figure 5: Time-Dependent Equilibrium Path Flows for Example 2 with Step-Wise Demand
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Example 3

In the third numerical example, the supply chain network consisted of two manufacturers,

one retailer, and two demand markets. Hence, we now had that m = 2, n = 1, n′ = 1′, and

o = 2.

The data were now as follows: The production cost functions for the manufacturers were

given by:

f1(q(t)) = 2.5q1(t)
2 + q1(t)q2(t) + 2q1(t), f2(q(t)) = 2.5q2(t)

2 + q2(t)q1(t) + 2q2(t).

The transaction cost functions faced by the manufacturers and associated with transacting

with the retailers were given by:

c11(q11(t)) = .5q11(t)
2 + 3.5q11(t), c21(q21(t)) = .5q21(t)

2 + 1.5q21(t).

The operating cost of the retailer, in turn, was given by:

c1(Q
1(t)) = .5(q11(t))

2.

The unit transaction costs associated with transacting between the retailers and the

demand market were:

cjk(Q
2(t)) = qjk(t) + 1, for j = 1, 2; k = 1, 2.

We utilized the supernetwork representation of this example depicted in Figure 6 with the

links enumerated as in Figure 6 in order to solve the problem via the Euler method. Note

that there are 7 nodes and 7 links in the supernetwork in Figure 6. Using the procedure

outlined in Section 4, we defined O/D pair w1 = (0, z1) and O/D pair w2 = (0, z2) with the

user link travel cost functions as given in (40) – (43).

There were two paths in Pw1 denoted by: p1, p2 and two paths in Pw2 denoted by: p3 and

p4, respectively. The paths were comprised of the following links:

p1 = (a1, a11, a11′ , a1′1), p2 = (a2, a21, a11′ , a1′1), p3 = (a1, a11, a11′ , a1′2), p4 = (a2, a21, a11′ , a1′2).
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The time horizon T = 1. The time-varying demand functions were given by:

d1(t) = 100 + 5t, d2(t) = 80 + 4t.

We discretized the time horizon T as follows: t0 = 0, t1 = 1
2
, and t2 = T = 1. We report

the solutions obtained by the Euler method at each discrete time step, for which we had,

respectively, demands: d1(t0) = 100, d1(t1) = 102.5, and d1(T ) = 105, and d2(t0) = 80,

d2(t1) = 82, and d2(T ) = 84.

Example 3: Solution at Time t = t0 = 0:

We applied the Euler method to the beginning of the time horizon where t = t0 = 0. The

Euler method now yielded the following equilibrium path flow pattern:

x∗
p1

(t0) = 49.90, x∗
p2

(t0) = 50.10, x∗
p3

(t0) = 39.90, x∗
p4

(t0) = 40.10.

The corresponding equilibrium link flows (cf. also the supernetwork in Figure 4) were:

f ∗
a1

(t0) = 89.80, f ∗
a2

(t0) = 90.20

f ∗
a11

(t0) = 89.80, f ∗
a21

(t0) = 90.20,

f ∗
a11′

(t0) = 180.00,

f ∗
a1′1

(t0) = 100.00, f ∗
a1′2

(t0) = 80.00,

with incurred equilibrium path travel costs: Cp1(t0) = Cp2(t0) = λ∗
w1

(t0) = 815.50 and

Cp3(t0) = Cp4(t0)=λ∗
w2

(t0) = 815.50.

The translations into the corresponding equilibrium flows are now given:

Q1∗(t0) := q∗11(t0) = 89.80, q∗21(t0) = 92.90,

s∗1(t0) = f ∗
a11′

(t0) = 180.00,

Q2∗(t0) := q∗11(t0) = 100.00, q∗12(t0) = 80.00.
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The demand prices at the demand markets were:

ρ∗
31(t0) = 815.50, ρ∗

32(t0) = 815.50,

which correspond to the travel costs on the paths (all are used) connecting the respective

O/D pair.

Example 3: Solution at Time t = t1 = 1
2
:

We applied the Euler method to time t = t1 = 1
2
. The Euler method now yielded the

following equilibrium path flow pattern:

x∗
p1

(t1) = 51.15, x∗
p2

(t1) = 51.35, x∗
p3

(t1) = 40.90, x∗
p4

(t1) = 41.10.

The corresponding equilibrium link flows (cf. also the supernetwork in Figure 3) were:

f ∗
a1

(t1) = 92.05, f ∗
a2

(t1) = 92.45

f ∗
a11

(t1) = 92.05, f ∗
a21

(t1) = 92.45,

f ∗
a11′

(t1) = 184.50,

f ∗
a1′1

(t1) = 102.50, f ∗
a1′2

(t1) = 82.00,

with equilibrium path costs:

Cp1(t1) = Cp2(t1) = λ∗
w1

(t1) = 835.75, Cp3(t1) = Cp4(t1) = λ∗
w2

(t1) = 835.75.

The translations into the corresponding equilibrium supply chain flows are now given:

Q1∗(t1) := q∗11(t1) = 92.05, q∗21(t1) = 92.45,

s∗1(t1) = f ∗
a11′

(t1) = 184.50,

Q2∗(t1) := q∗11(t1) = 102.50, q∗12(t1) = 82.00.

The demand prices at the demand markets were now:

ρ∗
31(t1) = 835.75, ρ∗

32(t1) = 835.75,
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which correspond to the travel costs on the paths (all are used) connecting the respective

O/D pair.

Example 3: Solution at Time t = T = 1:

Finally, we applied the Euler method to the end of the time horizon where t = T . The Euler

method now yielded the following equilibrium path flow pattern:

x∗
p1

(T ) = 52.40, x∗
p2

(T ) = 52.60, x∗
p3

(T ) = 41.90, x∗
p4

(T ) = 42.10.

The corresponding equilibrium link flows (cf. Figure 4) were:

f ∗
a1

(T ) = 94.30, f ∗
a2

(T ) = 94.70,

f ∗
a11

(T ) = 94.30, f ∗
a21

(T ) = 94.70,

f ∗
a11′

(T ) = 189.00,

f ∗
a1′1

(T ) = 105.00, f ∗
a1′2

(T ) = 84.00.

The equilibrium path costs, in turn, were now:

Cp1(T ) = Cp2(T ) = λ∗
w1

(T ) = 856.00, Cp3(T ) = Cp4(T ) = λ∗
w2

(T ) = 856.00.

The translations into the corresponding equilibrium supply chain flows were, hence:

Q1∗(T ) := q∗11(T ) = 94.30, q∗21(T ) = 94.70,

s∗1(T ) = f ∗
a11′

(T ) = 189.00,

Q2∗(T ) := q∗11(T ) = 105.00, q∗12(T ) = 84.00.

The demand prices at the demand markets were now:

ρ∗
31(T ) = 856.00, ρ∗

32(T ) = 856.00,

which correspond to the travel costs on the paths (all are used) connecting the respective

O/D pair.
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