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Abstract:

In this paper, we present a new theoretical framework for the quantification of strate-

gic advantages associated with horizontal mergers through the integration of supply chain

networks. The framework is a system-optimization one in which each firm is represented as

a network of economic activities associated with manufacturing, distribution, and storage

and with explicit capacities imposed on the links. We present the models pre- and post- the

horizontal mergers and define a measure for the quantification of the gains, if any, associated

with the mergers. We illustrate the framework with several numerical examples. For simple

classes of mergers we derive formulae for the strategic advantages.

Keywords: System-optimization, supply chains, network acquisitions, horizontal mergers,

supply chain performance metrics, strategic advantage, synergy, transportation and logistics
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1. Introduction

In this paper, we explore the strategic advantages of supply chain network integration

using a system-optimization perspective. The motivation for this research is the growing

interest in the construction of measures for quantifying the impacts on supply chains when

firms merge. We utilize a system-optimization perspective since it is grounded in transporta-

tion science and since it enables one to graphically represent and to formulate and compute

the strategic advantages associated with a variety of mergers. In this paper, we focus on

horizontal mergers and we assume that the firms that merge are in the same industry. Re-

cent examples of mergers include the merger of Kmart and Sears in the retail industry (see

Knowledge@Wharton (2005)) and the merger of Molson and Coors in the beverage industry

(cf. Beverage World, 2007) with Molson Coors expected to exceed its merger synergy goal

of $175 million in annual savings by the end of 2007.

As noted by Langabeer (2003) the use of mergers and acquisitions (M&As) continues to

grow “exponentially” with over 6,000 M&A transactions conducted world-wide in 2001, with

a value of over a trillion dollars. Nevertheless, many scholars argue whether or not mergers

achieve their objectives. For example, Marks and Mirvis (2001) found that fewer than 25%

of all mergers achieve their stated objectives. Langabeer and Seifert (2003) determined a

direct correlation between how effectively supply chains of merged firms are integrated and

how successful the merger is. Furthermore, they state, based on the empirical findings in

Langabeer (2003), which analyzed hundreds of mergers over the past decade, that improving

supply chain integration between merging companies is the key to improving the likelihood

of post-merger success.

In this paper, we envision each firm as a network of economic activities consisting of

manufacturing, which is conducted at the firm’s plants or manufacturing facilities; distri-

bution, which occurs between the manufacturing plants and the distribution centers, which

also store the product produced by each firm, and the ultimate distribution of the product

to the retailers. Associated with each such economic activity is a link in the network with

a total associated cost that depends on the flow of the product on the link. The links, be

they manufacturing, shipment, or storage links have capacities on the flows. We assume, as

given, the demand for the product at each retailer.
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Some of the history of the evolution of network models for firms and numerous network-

based economic models can be found in the book by Nagurney (1993). More recently,

a variety of supply chain network equilibrium models, initiated by Nagurney, Dong, and

Zhang (2002) have been developed, which focus on competition among decision-makers (such

as manufacturers, distributors, and retailers) at a tier of the supply chain but cooperation

between tiers. The relationships of such supply chain network equilibrium problems to

transportation network equilibrium problems, which are characterized by user-optimizing

behavior have also been established (cf. Nagurney, 2006a). Zhang, Dong, and Nagurney

(2003) and Zhang (2006), in turn, modeled competition among supply chains in a supply

chain economy context. See the book by Nagurney (2006b) for a spectrum of supply chain

network equilibrium models and applications.

Here, in contrast, we provide a system-optimization perspective for supply chains. It is

worth mentioning that the term system-optimization in transportation science was coined by

Dafermos and Sparrow (1969) to correspond to Wardrop’s second principle of travel behavior

with user-optimization corresponding to his first principle (cf. Wardrop, 1952). A system-

optimization perspective for supply chains, as we demonstrate, enables the modeling of the

economic activities associated with a firm as a network, and, hence, the evaluation of the

strategic advantages, often referred to as synergy , due to mergers (or acquisitions), in a

network format. However, unlike a classical system-optimization formulation, we explicitly

consider capacities on the links of the networks. As noted by Soylu et al. (2006) more and

more companies now realize the strategic importance of controlling the supply chain as a

whole (see also, Brown et al., 2001, for a specific corporate example). Furthermore, Min

and Zhou (2002) emphasized the need to analyze the synergy obtained through both inter-

functional and inter-organizational integration. Hakkinen et al. (2004) further described

the integration of logistics after M&As with a review of the literature and concluded that

operational issues, in general, and logistics issues, in particular, have received insufficient

attention; see also Herd et al. (2005).

In particular, synergy in supply chains has been considered based on mixed integer linear

programming models by Soylu et al. (2006), who focused on energy systems, and by Xu

(2007), who developed multiperiod supply chain planning models with an emphasis on the

distribution aspects, and investigated market regions, distribution configurations, as well
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as product characteristics and planning horizons. Juga (1996) earlier considered network

synergy in logistics with a specific case study but did not present any mathematical mod-

els. Nijkamp and Reggiani (1998), in turn, investigated network synergies with links as

productive factors. Gupta and Gerchak (2002) presented a model to capture operational

efficiency and focused on production efficiency associated with mergers and acquisitions

whereas Alptekinoglu and Tang (2005), subsequently, focused on distribution efficiency as-

sociated with mergers and acquisitions. The latter authors also established that their model

was a convex nonlinear programming problem.

This paper is organized as follows. In Section 2, we develop the system-optimization

problems, which are nonlinear programming problems with network structure, faced by the

two firms whose merger we wish to evaluate. We present both the pre-merger optimization

problem, which we refer to as the baseline case, or Case 0, and the system-optimization

problems associated with three distinct horizontal mergers:

Case 1: the firms merge and retailers associated with either original firm can now get the

product from any manufacturing plant but still use their original distribution centers;

Case 2: the firms merge and the retailers can obtain the product from any distribution center

but the manufacturers deal with their original distribution centers, and

Case 3: the firms merge and the retailers can obtain the product produced at any of the

manufacturing facilities and distributed by any of the distribution centers.

We represent the underlying associated networks before and after the mergers and demon-

strate that the solution of all the system-optimization problems can be obtained by solving

a variational inequality problem, with a structure that can be easily exploited for computa-

tional purposes. Notably, our framework incorporates manufacturing/production activities,

as well as distribution and storage activities both prior to and post the merger (or acquisi-

tion).

In Section 3, we present a measure of strategic advantage, which allows one to evaluate

the gains, if any, associated with the above-described horizontal mergers. In Section 4, we

provide a spectrum of examples, in which we compute the strategic advantage associated

with mergers in the case of many different scenarios. In Section 5, we summarize the results
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in this paper and present our conclusions.

2. The Pre- and Post-Horizontal Mergers Supply Chain Network Models

In this Section, we describe the supply chain network models prior and post the horizontal

mergers. We consider two firms, denoted by Firm A and Firm B, who are integrated post

the merger. We assume that each firm produces the same homogeneous product since the

focus here is on horizontal mergers in the same industry. The explicit horizontal mergers

that we model and evaluate are:

Case 1: Firms A and B merge and share manufacturing plants only;

Case 2: Firms A and B merge and share distributions centers only;

Case 3: Firms A and B merge and share manufacturing plants and distribution centers.

As mentioned in the Introduction, the formalism that we utilize is that of system-

optimization, where each of the firms is assumed to own its manufacturing facilities/plants,

and its distribution centers, and each firm seeks to determine the optimal production of

the product at each of its manufacturing plants and the optimal quantities shipped to the

distribution centers, where the product is stored, and, finally, shipped to the retail outlets.

We assume that each firm seeks to minimize the total costs associated with the produc-

tion, storage, and distribution activities, subject to the demand being satisfied at the retail

outlets.

In Section 2.1, we formulate the pre-merger system-optimization problem associated with

each of the firms individually and together prior to the merger and we consider this as the

baseline case, Case 0. In Section 2.2, we formulate the three post-merger models, corre-

sponding to Case 1, Case 2, and Case 3, respectively.

2.1 The Pre-Merger Supply Chain Network Model(s)

We formulate the optimization problem faced by Firm A and Firm B as follows. We

assume that each firm is represented as a network of its economic activities, as depicted in

Figure 1. Each firm i; i = A, B, has ni
M manufacturing facilities/plants; ni

D distribution

centers, and serves ni
R retail outlets. We let Gi = [Ni, Li] for i = A, B denote the graph
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Figure 1: Case 0: Firms A and B Prior to Horizontal Merger

consisting of nodes and directed links representing the economic activities associated with

each firm i. We also let G0 = [N0, L0] ≡ ∪i=A,B[Ni, Li]. The links from the top-tiered

nodes i; i = A, B in each network in Figure 1 are connected to the manufacturing nodes

of the respective firm i, which are denoted, respectively, by: M i
1, . . . ,M

i
ni

M
, and these links

represent the manufacturing links.

The links from the manufacturing nodes, in turn, are connected to the distribution center

nodes of each firm i; i = A, B, which are denoted by Di
1,1, . . . , D

i
nD

i,1. These links correspond

to the shipment links between the manufacturing plants and the distribution centers where

the product is stored. The links joining nodes Di
1,1, . . . , D

i
ni

D,1 with nodes Di
1,2, . . . , D

i
ni

D,2 for

i = A, B correspond to the storage links. Finally, there are shipment links joining the nodes

Di
1,2, . . . , D

i
ni

D,2 for i = A, B with the retail outlet nodes: Ri
1, . . . , R

i
ni

R
for each firm i = A, B.

Note that each firm i has its individual retail outlets where it sells the product, as depicted

in Figure 1.

We assume that associated with each link (cf. Figure 1) of the network corresponding to

each firm i; i = A, B is a total cost. We denote, without any loss in generality, the links by
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a, b, etc., and the total cost on a link a by ĉa. The demands for the product are assumed

as given and are associated with each firm and retailer pair. Let dRi
k

denote the demand for

the product at retailer Ri
k associated with firm i; i = A, B; k = 1, . . . , ni

R. Let xp denote

the nonnegative flow of the product on path p joining (origin) node i with a (destination)

retailer node of firm i; i = A, B. Then the following conservation of flow equations must

hold for each firm i: ∑
p∈P 0

Ri
k

xp = dRi
k
, i = A, B; k = 1, . . . , ni

R, (1)

where P 0
Ri

k
denotes the set of paths connecting (origin) node i with (destination) retail node

Ri
k.

In addition, we let fa denote the flow of the product on link a. Hence, we must also have

the following conservation of flow equations satisfied:

fa =
∑

p∈P 0

xpδap, ∀p ∈ P 0, (2)

where δap = 1 if link a is contained in path p and δap = 0, otherwise. Here P 0 denotes the set

of all paths in Figure 1, that is, P 0 = ∪i=A,B;k=1,...,ni
R
P 0

Ri
k
. Obviously, since here we consider

the two firms prior to any merger the paths associated with a given firm have no links in

common with paths of the other firm. This changes when the horizontal mergers occur, in

which case the number of paths and the sets of paths also change, as do the number of links

and the sets of links, as we demonstrate in Section 2.2.

Of course, we also have that the path flows must be nonnegative, that is,

xp ≥ 0, ∀p ∈ P 0. (3)

The total cost on a link, be it a manufacturing/production link, a shipment link, or a

storage link is assumed to be a function of the flow of the product on the link; see, for

example, Nagurney (2006b) and the references therein.

Hence, we may write that

ĉa = ĉa(fa), ∀a ∈ L0. (4)
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We assume that the total cost on each link is convex, is continuously differentiable, and has

a bounded second order partial derivative. We assume the same for all links that are added

post mergers, as well. Such conditions will guarantee convergence of the proposed algorithm.

Furthermore, we assume that there are nonnegative capacities on the links with the

capacity on link a denoted by ua, ∀a. This is very reasonable since the manufacturing

plants, the shipment links, as well as the distribution centers, which serve also as the storage

facilities can be expected to have capacities, in practice.

The total cost associated with the economic activities of both firms prior to the merger

is minimized when the following system-optimization problem is solved:

Minimize
∑

a∈L0

ĉa(fa) (5)

subject to: constraints (1) – (3) and

fa ≤ ua, ∀a ∈ L0. (6)

Clearly, the solution of the above optimization problem will minimize the total costs

associated with each firm individually as well as both firms together since they are prior

to the merger independent and share no manufacturing facilities or distribution facilities or

retail outlets. Observe that this problem is, as is well-known in the transportation literature

(cf. Beckmann, McGuire, and Winsten, 1956; Dafermos and Sparrow, 1969), a system-

optimization problem but in capacitated form; see also Patriksson (1994) and Nagurney

(2000) and the references therein. Under the above imposed assumptions, the optimization

problem is a convex optimization problem. If we further assume that the feasible set un-

derlying the problem represented by the constraints (1) – (3) and (6) is non-empty, then

it follows from the standard theory of nonlinear programming (cf. Bazaraa, Sherali, and

Shetty, 1993) that the optimal solution, denoted by f ∗ ≡ {f ∗a}, a ∈ L0, exists.

We let K0 denote the set where K0 ≡ {f |∃x ≥ 0, and (1) − (3) and (6) hold}, where f is

the vector of link flows and x the vector of path flows.

Also, we associate the Lagrange multiplier βa with constraint (6) for link a and we denote

the associated optimal Lagrange multiplier by β∗
a. This term may also be interpreted as the

price or value of an additional unit of capacity on link a.
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We now state the following result in which we provide a variational inequality formulation

of the problem.

Theorem 1

The vector of link flows f ∗ ∈ K0 is an optimal solution to problem (5), subject to (1) through

(3) and (6), if and only if it satisfies the following variational inequality problem with the

vector of nonnegative Lagrange multipliers β∗:∑
a∈L0

[
∂ĉa(f

∗
a )

∂fa

+ β∗
a

]
× [fa−f ∗a ]+

∑
a∈L0

[ua−f ∗a ]× [βa−β∗
a] ≥ 0, ∀f ∈ K0, ∀βa ≥ 0,∀a ∈ L0.

(7)

Proof: See Bertsekas and Tsitsiklis (1989).

The above variational inequality problem is of the form considered by Bertsekas and

Tsitsiklis (1989) and others (see, e.g., Nagurney and Dong, 2002) and variational inequality

(7) can be easily solved using the modified projection method (also sometimes referred to

as the extragradient method). The elegance of this computational procedure in the context

of variational inequality (7) lies in that it allows one to utilize algorithms for the solution of

the uncapacitated system-optimization problem (for which numerous algorithms exist in the

transportation science literature) with a straightforward update procedure at each iteration

to obtain the Lagrange multipliers. To solve the former problem we will utilize in Section

4 the well-known equilibration algorithm (system-optimization version) of Dafermos and

Sparrow (1969), which has been widely applied (see also, e.g., Nagurney, 1993, 2000). Indeed,

we will see that the variational inequalities governing the supply chain networks post-mergers

will also be of the form (7) and, hence, also amenable to solution via the modified projection

method (cf. Korpelevich, 1977; Nagurney, 1993). Recall that the modified projection method

is guaranteed to converge to a solution of a variational inequality problem, provided that the

function that enters the variational inequality problem is monotone and Lipschitz continuous

(see, e.g., Nagurney, 1993) and that a solution exists.

Once we have solved problem (7) we have the solution f ∗ which minimizes the total cost

(cf. (5)) in the supply chain networks associated with the two firms. We denote this total
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cost given by
∑

a∈L0 ĉa(f
∗
a ) as TC0 and we use this total cost value as a baseline from which to

compute the strategic advantage, discussed in Section 3, associated with horizontal mergers

that we describe below.

2.2 The Horizontal Merger Supply Chain Network Models

In this Section, we consider three post-merger cases. In Case 1, the firms merge and

retailers associated with either original firm can now get the product from any manufacturing

plant but still use their original distribution centers. In Case 2, the firms merge and the

retailers can obtain the product from any distribution center but the manufacturers deal

with their original distribution centers, and in Case 3, the firms merge and the retailers can

obtain the product produced at any of the manufacturing facilities and distributed by any

of the distribution centers. Case 1 is depicted graphically in Figure 2, whereas Case 2 is

depicted in Figure 3, and Case 3 in Figure 4.

Section 2.2.1: Case 1

In Case 1, we add to the network G0 depicted in Figure 1 a supersource node 0 and links

joining node 0 to nodes i = A, B to reflect the merger of the two firms. We also add new

links joining each manufacturing node of each firm with the distribution center nodes of the

other firm, as depicted in Figure 2. We denote the new network topology in Figure 2 by

G1 = [N1, L1] where N1 = N0 ∪ node 0 and L1 = L0 ∪ the additional links.

We assume, for simplicity, that the total costs associated with merging are negligible

(since the focus here is on the operational aspects associated with production, storage, and

transportation/logistics) and, therefore, the total costs associated with the links emanating

from node 0 are equal to zero. Of course, if one wishes to include the costs associated with

merging the two firms in this manner then one can easily include total cost functions of the

form given by (4) for these links.

In addition, we assume that the new links emanating from the manufacturing nodes to

the distribution center nodes have associated total cost functions of the form given by (4).

Let xp denote the flow of the product on path p joining (origin) node 0 with a (destination)

10
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Figure 2: Case 1: Firms A and B Merge: Retailers Associated with Either Firm A or Firm
B Can Now Get the Product Produced at Any Manufacturing Plant but Each Retailer is
Supplied by Each Firm’s Original Distribution Centers

retailer node. Then the following conservation of flow equations must hold:∑
p∈P 1

Ri
k

xp = dRi
k
, i = A, B; k = 1, . . . , ni

R, (8)

where P 1
Ri

k
denotes the set of paths connecting node 0 with retail node Ri

k. Due to the

merger, the retail outlets can obtain the product from any manufacturer. The set P 1 ≡
∪i=A,B;k=1,...,ni

R
P 1

Ri
k
.

In addition, as before, we let fa denote the flow of the product on link a. Hence, we must

also have the following conservation of flow equations satisfied:

fa =
∑

p∈P 1

xpδap, ∀p ∈ P 1. (9)

Of course, we also have that the path flows must be nonnegative, that is,

xp ≥ 0, ∀p ∈ P 1. (10)
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The optimization problem associated with this horizontal merger which minimizes the

total cost subject to the demand for the product being satisfied at the retailers is given by:

Minimize
∑

a∈L1

ĉa(fa) (11)

subject to: constraints (8) – (10) and

fa ≤ ua, ∀a ∈ L1. (12)

Clearly, the solution to this problem can also be obtained as a solution to a variational

inequality problem akin to (7) where now a ∈ L1, and the vectors: f , f ∗, x, and β have

identical definitions as before, but are re-dimensioned accordingly. Finally, the set K0 is

replaced byK1 ≡ {f |∃x ≥ 0, and (8)−(10) and (12) hold}. Hence, one can apply the modified

projection problem to compute the solution to the variational inequality problem governing

Case 1, as well. The optimal solution for Case 1 has an associated total cost given by∑
a∈L1 ĉa(f

∗
a ) which we denote by TC1.

Section 2.2.2: Case 2

We now formulate the merger associated with Case 2 in which firms A and B merge and

the retailers can obtain the product from any distribution center but the manufacturers deal

with their original distribution centers. Figure 3 depicts the network topology associated

with this type of horizontal merger. Specifically, to network G0 depicted in Figure 1, we add

a super source node 0 and links joining node 0 with nodes i = A, B to reflect the merger (as

we did for Case 1). Also, we add links connecting the distribution centers of each firm to

the (other) retailers. We refer to the network underlying this merger as G2 = [N2, L2] where

N2 = N1. We associate with the new shipment links total cost functions as in (4).

We now define the feasible set K2 underlying the Case 2 horizontal merger problem.

Let xp, again, denote the flow of the product on path p joining (origin) node 0 with a

(destination) retailer node. Then the following conservation of flow equations must hold:

∑
p∈P 2

Ri
k

xp = dRi
k
, i = A, B; k = 1, . . . , ni

R, (13)
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Figure 3: Case 2: Firms A and B Merge: Retailers Associated with Either Firm A or Firm
B Can Now Get the Product from Any Distributor but Each Manufacturer of Each Original
Firm Deals with its Original Distributor

where P 2
Ri

k
denotes the set of paths connecting node 0 with retail node Ri

k in Figure 3. Due

to the merger, the retail outlets can obtain the product from any manufacturer and any

distributor. The set P 2 ≡ ∪i=A,B;k=1,...,ni
R
P 2

Ri
k
.

In addition, as before, we let fa denote the flow of the product on link a. Hence, we must

also have the following conservation of flow equations satisfied:

fa =
∑

p∈P 2

xpδap, ∀p ∈ P 2. (14)

Of course, we also have that the path flows must be nonnegative, that is,

xp ≥ 0, ∀p ∈ P 2. (15)

The optimization problem associated with this horizontal merger which minimizes the

total cost subject to the demand for the product being satisfied at the retailers is given by:

Minimize
∑

a∈L2

ĉa(fa) (16)
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subject to: constraints (13) – (15) and

fa ≤ ua, ∀a ∈ L2. (17)

Clearly, the solution to this problem can also be obtained as a solution to a variational

inequality problem akin to (7) where now a ∈ L2; where the vectors: f , f ∗, x, and β have

identical definitions as before, but are re-dimensioned/expanded accordingly. Finally, instead

of K1 we now have K2 ≡ {f |∃x ≥ 0, and (13)− (15) and (17) hold}. One can also apply the

modified projection problem to compute the solution to the variational inequality problem

governing Case 2. The total cost TC2, which is the value of the objective function (16) at

the optimal solution f ∗ is equal to
∑

a∈L2 ĉa(f
∗
a ).

Section 2.2.3: Case 3

We now formulate the merger associated with Case 3 in which firms A and B merge and

the retailers can obtain the product from any manufacturer and shipped from any distribution

center. Figure 4 depicts the network topology associated with this type of horizontal merger.

Specifically, we retain the nodes and links associated with network G1 depicted in Figure 2

but now the additional links connecting the distribution centers of each firm to the retailers

of the other are added. We refer to the network underlying this merger as G3 = [N3, L3]

where N3 = N1. We associate with the new shipment links total cost functions as in (4).

Let xp, again, denote the flow of the product on path p joining (origin) node 0 with a

(destination) retailer node. Then the following conservation of flow equations must hold:∑
p∈P 3

Ri
k

xp = dRi
k
, i = A, B; k = 1, . . . , ni

R, (18)

where P 3
Ri

k
denotes the set of paths connecting node 0 with retail node Ri

k in Figure 4. Due

to the merger, the retail outlets can obtain the product from any manufacturer and any

distributor. The set P 3 ≡ ∪i=A,B;k=1,...,ni
R
P 3

Ri
k
.

In addition, as before, we let fa denote the flow of the product on link a. Hence, we must

also have the following conservation of flow equations satisfied:

fa =
∑

p∈P 3

xpδap, ∀p ∈ P 3. (19)

14



RA
1

m · · · mRA
nA

R
RB

1
m · · · mRB

nB
R

?

HHH
HHHj?

����
���

PPPPPPPPPq?

HHHH
HHj

���������) ?

����
���

DA
1,2

m · · · mDA
nA

D,2 DB
1,2

m · · · mDB
nB

D,2

? ? ? ?

DA
1,1

m · · · mDA
nA

D,1 DB
1,1

m · · · mDB
nB

D,1

?

H
H

H
H

HHj?

�
�

�
�

���

PPPPPPPPPq?

H
H

H
H

HHj

���������) ?

�
�

�
�

���

MA
1

m · · · mMA
nA

M
MB

1
m · · · mMB

nB
M

�
�

�	

@
@

@R

�
�

�	

@
@

@R

mA mB
�

�
�

�
�

�
���

H
H

H
H

H
H

HHj

m0
Firm A Firm B

Figure 4: Case 3: Firms A and B Merge: Retailers Associated with Either Firm A or Firm
B Can Now Get the Product Produced at Any Manufacturing Plant and Distributed and
Stored by Any Distribution Center

Of course, we also have that the path flows must be nonnegative, that is,

xp ≥ 0, ∀p ∈ P 3. (20)

The optimization problem associated with this horizontal merger which minimizes the

total cost subject to the demand for the product being satisfied at the retailers is given by:

Minimize
∑

a∈L3

ĉa(fa) (21)

subject to: constraints (18) – (20) and

fa ≤ ua, ∀a ∈ L3. (22)

Clearly, the solution to this problem can also be obtained as a solution to a variational

inequality problem akin to (7) where now a ∈ L3; where the vectors: f , f ∗, x, and β have

identical definitions as before, but are re-dimensioned/expanded accordingly. Finally, instead
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of K1 we now have K3 ≡ {f |∃x ≥ 0, and (18)− (20) and (22) hold}. One can also apply the

modified projection problem to compute the solution to the variational inequality problem

governing Case 3. The total cost TC3, which is the value of the objective function (21) at

the optimal solution f ∗ is equal to
∑

a∈L3 ĉa(f
∗
a ). In the next section, we discuss how we

utilize the total costs: TC0, TC1, TC2, and TC3 to determine the strategic advantage (or

synergy) associated with the respective horizontal mergers associated with Cases 1, 2, and

3.

Hence, we have a unified framework for the formulation of the system-optimization prob-

lems associated with the supply chain networks pre- and post- the merger of the two firms

A and B.

3. Measuring the Strategic Advantage Associated with Horizontal Mergers

In this Section, we provide a measure for quantifying the strategic advantage associated

with horizontal mergers.

The measure that we utilize to capture the gains, if any, associated with a horizontal

merger Case i; i = 1, 2, 3 is as follows:

S i =

[
TC0 − TCi

TC0

]
× 100%, (23)

where recall that TCi is the total cost associated with the value of the objective function∑
a∈Li ĉa(fa) for i = 0, 1, 2, 3 evaluated at the optimal solution for Case i. Note that S i;

i = 1, 2, 3 may also be interpreted as synergy . For example, Xu (2007) in the context of her

MILP (mixed integer linear) programming models associated with the evaluation of mergers

with a focus on distribution used a similar measure. Here, however, the total costs are

based on the supply chain network models developed in Section 2. These models include

manufacturing, distribution, as well as storage of the product that is produced by the two

firms both pre- and post- the mergers.

In the case of simple, stylized examples one may be able to derive explicit formulae for

S i. For example, if both firms A and B pre-merger have a single manufacturing plant, a

single distribution center, and a single retailer, and identical demands at the retailers, given

by d, and assuming that the total costs on each link a ∈ L0 are given by: ĉa = gf2
a + hfa,
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with g > 0 and h > 0, and the capacities on the links are not less than the demand d then

it is straightforward to determine (cf. Figure 1) that: TC0 = 8[gd2 + hd]. Assume now that

new links are added to construct Case 1, Case 2, and Case 3 accordingly, where we assume

that the total costs on the new links are all identically equal to zero and their capacities are

greater than or equal to the demand d. Then, since the addition of the new zero cost links

creates new paths, and new S-O flow solutions, we obtain that TC1 = TC2 = 6[gd2 + hd]

and TC3 = 4[gd2 + hd]. It follows that:

S1 = S2 = 25%, S3 = 50%.

A slightly more general case would be as above but now we assume that the manufacturing

link, denoted by a ∈ L0 of either firm has an identical cost of the form: gaf
2
a + hafa; the

first shipment link b of either firm has a total cost of the form: gbf
2
b + hbfb; the storage

link, denoted, for simplicity, by c, of either firm has a total cost of the form: gcf
2
c + hcfc,

and, finally, the total cost associated with each bottom shipment link has a total cost given

by: gdf
2
d + hdfd, where we assume that ga, gb, gc, and gd > 0 and ha, hb, hc, and hd > 0.

Then, one can, also, easily derive the following total cost formulae from which the strategic

advantages can then be determined according to (23), assuming that, as above, the total

costs associated with the new, cross-linkage shipment links associated with the respective

mergers are all identically equal to zero:

TC0 = 2[gad
2 + had] + 2[gbd

2 + hbd] + 2[gcd
2 + hcd] + 2[gdd

2 + hdd],

TC1 = 2[gad
2 + had] + 2[gcd

2 + hcd] + 2[gdd
2 + hdd],

TC2 = 2[gad
2 + had] + 2[gbd

2 + hbd] + 2[gcd
2 + hcd],

TC3 = 2[gad
2 + had] + 2[gcd

2 + hcd].
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Figure 5: Case 0 Network Topology for the Numerical Examples

4. Numerical Examples

In this Section, we present five numerical examples for which we compute the strategic

advantage measure as in (23) for the different Cases.

We consider Firm A and Firm B, each of which has two manufacturing plants: M i
1 and

M i
2; i = A, B. In addition, each firm has a single distribution center to which the product

is shipped from the manufacturing plants and stored. Finally, once stored, the product is

shipped to the two retailers associated with each firm and denoted by Ri
1 and Ri

2 for i = A, B.

A graphical depiction of the supply chain networks associated with the two firms pre-merger

and representing Case 0 is given in Figure 5. Figure 6 depicts the Case 1 horizontal merger;

Figure 7 depicts the Case 2 horizontal merger, and Figure 8 depicts the Case 3 horizontal

merger of these two firms.

We utilized the modified projection method, embedded with the equilibration algorithm,

as discussed in Section 2, in order to compute the solutions to the problems. We implemented

the algorithm in FORTAN and utilized a Unix system at the University of Massachusetts

for the computations.
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Figure 6: Case 1 Network Topology for the Numerical Examples
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Figure 7: Case 2 Network Topology for the Numerical Examples
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Figure 8: Case 3 Network Topology for the Numerical Examples

In Table 1, we define the links on the various networks, and the total link cost functions

associated with the various supply chain activities of manufacturing, shipping/distribution,

and storage. Since, as mentioned earlier, the merger links (emanating from node 0) are not

assumed to have associated total costs, we do not introduce cost functions for those links.

The capacities on all the links in all the examples (see (6), (12), (17), and (22)) were set to:

ua = 15 for all links a.

The demands at the retailers, except were noted, were: dRA
1

= 5, dRA
2

= 5, and dRB
1

= 5,

dRB
2

= 5.

Below we provide additional details concerning the particular examples.
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Table 1: Definition of Links and Associated Total Cost Functions for the Numerical Examples

Link a From Node To Node Ex. 1: ĉa(fa) Ex. 2: ĉa(fa) Ex. 3,4: ĉa(fa) Ex. 5: ĉa(fa)
1 A MA

1 f 2
1 + 2f1 f 2

1 + 2f1 .5f 2
1 + f1 .5f 2

1 + f1

2 A MA
2 f 2

2 + 2f2 f 2
2 + 2f2 .5f 2

2 + f2 .5f 2
2 + f2

3 MA
1 DA

1,1 f 2
3 + 2f3 f 2

3 + 2f3 f 2
3 + 2f3 f 2

3 + 2f3

4 MA
2 DA

1,1 f 2
4 + 2f4 f 2

4 + 2f4 f 2
4 + 2f4 f 2

4 + 2f4

5 DA
1,1 DA

1,2 f 2
5 + 2f5 .5f 2

5 + f5 .5f 2
5 + f5 .5f 2

5 + f5

6 DA
1,2 RA

1 f 2
6 + 2f6 f 2

6 + 2f6 f 2
6 + 2f6 f 2

6 + 2f6

7 DA
1,2 RA

2 f 2
7 + 2f7 f 2

7 + 2f7 f 2
7 + 2f7 f 2

7 + 2f7

8 B MB
1 f 2

8 + 2f8 f 2
8 + 2f8 f 2

8 + 2f8 f 2
8 + 2f8

9 B MB
2 f 2

9 + 2f9 f 2
9 + 2f9 f 2

9 + 2f9 f 2
9 + 2f9

10 MB
1 DB

1,1 f 2
10 + 2f10 f 2

10 + 2f10 f 2
10 + 2f10 f 2

10 + 2f10

11 MB
2 DB

1,1 f 2
11 + 2f11 f 2

11 + 2f11 f 2
11 + 2f11 f 2

11 + 2f11

12 DB
1,1 DB

1,2 f 2
12 + 2f12 .5f 2

12 + f12 .5f 2
11 + f11 .5f 2

11 + f11

13 DB
1,2 RB

1 f 2
13 + 2f13 f 2

13 + 2f13 f 2
13 + 2f13 f 2

13 + 2f13

14 DB
1,2 RB

2 f 2
14 + 2f14 f 2

14 + 2f14 f 2
14 + 2f14 f 2

14 + 2f14

15 MA
1 DB

1,1 f 2
15 + 2f15 f 2

15 + 2f15 f 2
15 + 2f15 0.00

16 MA
2 DB

1,1 f 2
16 + 2f16 f 2

16 + 2f16 f 2
16 + 2f16 0.00

17 MB
1 DA

1,1 f 2
17 + 2f17 f 2

17 + 2f17 f 2
17 + 2f17 0.00

18 MB
2 DA

1,1 f 2
18 + 2f18 f 2

18 + 2f18 f 2
18 + 2f18 0.00

19 DA
1,2 RB

1 f 2
19 + 2f19 f 2

19 + 2f19 f 2
19 + 2f19 0.00

20 DA
1,2 RB

2 f 2
20 + 2f20 f 2

20 + 2f20 f 2
20 + 2f20 0.00

21 DB
1,2 RA

1 f 2
21 + 2f21 f 2

21 + 2f21 f 2
21 + 2f21 0.00

22 DB
1,2 RA

2 f 2
22 + 2f22 f 2

22 + 2f22 f 2
2 + 2f22 0.00
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Example 1

Example 1 served as the baseline example and the total cost functions for the links are

reported in Table 1 with the total costs associated with each of the three merger cases

given in Table 2. Note that the strategic advantage or synergy approximately doubled when

retailers could obtain the product from any manufacturer and from any distribution center

(Case 3) relative to Cases 1 and 2 going from 7.5% to 15.1%.

Example 2

Example 2 was constructed from Example 1 as follows. The demands were the same at the

retailers as in Example 1 as were the capacities and total cost functions for all links except

for the total cost functions associated with the storage links, link 5 and link 12, representing

the total costs associated with storing the product at the distribution centers associated

with Firm A and Firm B, respectively. Rather than having these total costs be given by

ĉ5 = f 2
5 + 2f5 and ĉ12 = f12 + 2f12 as they were in Example 1, they were now reduced to:

ĉ5 = .5f 2
5 +f5 and ĉ12 = .5f12+f12 as reported in Table 1. The strategic advantage associated

with all three horizontal mergers now increased, as reported in Table 2.

Example 3

Example 3 was constructed from Example 2 and had the same data except that now we

reduced the total cost associated with the manufacturing plants belonging to Firm A as

given in Table 1. Specifically, we changed ĉ1 = f 2
1 + 2f1 and ĉ2 = f2 + 2f2 to: ĉ1 = .5f 2

1 + f1

and ĉ2 = .5f2 + f2. The computed strategic advantage for each of the three horizontal

mergers is given in Table 2. These values were greater than the respective ones for Example

2, although not substantially so.

Example 4

Example 4 was identical to Example 3 except that now the demand dRA
1

= 10, that is, the

demand for the product doubled at the first retailer associated with Firm A. The total costs

and the strategic advantages for the different horizontal merger cases are given in Table 2.

Note that now the synergies associated with Case 1 and Case 2 mergers were lower than
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Table 2: Total Costs and Strategic Advantages of the Different Merger Cases for the Nu-
merical Examples

Example 1 2 3 4 5
TC0 660.00 540.00 505.00 766.25 766.25
TC1 610.00 490.00 447.80 687.92 573.80
S1 7.5% 9.2% 11.3% 10.2% 26.5%

TC2 610.00 490.00 447.80 675.60 549.73
S2 7.5% 9.2% 11.3% 13.3% 28.2%

TC3 560.00 432.00 389.80 581.30 320.20
S3 15.1% 20% 20.8% 24.1% 57.5%

those obtained for Example 3, suggesting that if the manufacturing costs of one plant are

much higher than the other than these types of mergers are not as beneficial. However, the

Case 3 merger yielded a strategic advantage of 24.1% which was higher than that obtained

for this case in Example 3.

Example 5

Example 5 was constructed from Example 4 and here we considered an idealized version in

that the total cost functions (cf. Table 1) associated with shipment links which are added

after the respective horizontal mergers are all equal to zero. The strategic advantages were

now quite significant, as Table 2 reveals. Indeed, the strategic advantage for Case 3 was now

57.5%. This example demonstrates that significant cost reductions can occur in mergers in

which the costs associated with distribution between the associated plants and distribution

centers and the distribution centers and retailers are very low.

5. Summary and Conclusions

In this paper, we presented a novel system-optimization approach for the representation

of economic activities associated with supply chain networks, in particular, manufacturing,

distribution, as well as storage, which we then utilized to quantify the strategic advantages or

gains, if any, associated with the integration of supply chain networks through the horizontal

merger of firms. However, unlike the classical system-optimization model in transportation
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science, here we presented a model with capacities on the links to represent the capacities

associated with manufacturing plants, shipment/distribution routes, and storage facilities.

A given firm’s economic activities may be cast into this network economic form with total

costs associated with the links and the demands at the retailers assumed known and given. A

particular firm was assumed to be interested in determining its optimal production quantity

of the product, the amounts to be shipped to its distribution centers, where the product is

stored, and then shipped to the retailers, in order to satisfy the demand and to minimize

the total associated costs.

We established that the system-optimization model with capacities could be formulated

and solved as a variational inequality problem. We then used this framework to explore the

strategic advantages that could be obtained from the integration of supply chain networks

through distinct horizontal mergers of two firms and we identified three distinct cases of

horizontal mergers. In particular, we presented a measure for strategic advantage or synergy

and then computed the strategic advantage for different cases of horizontal mergers for five

numerical examples. In addition, in the case of certain supply chain networks with special

structure, we were able to obtain explicit formulae for the total costs associated with different

horizontal mergers and the associated strategic advantages.

The novelty of the framework lies in the graphical depiction of distinct types of mergers,

with a focus on the involved firms’ supply chain networks, and the efficient and effective

computation of the total costs pre- and post- the mergers, coupled with the determination

of the associated strategic advantage or synergy of the particular merger. No such general

framework, which includes the integration of the manufacturing, distribution, and storage

activities of firms, along with capacities, and the effects on total costs associated with three

distinct types of horizontal mergers has been presented before. Possible extensions of this

work are the consideration of multiple product supply chains modeled as system-optimization

problems with capacities, and the investigation of the associated synergies with mergers and

acquisitions of such firms, as well as multiperiod models. Of course, it would also be very

interesting to model not only horizontal mergers of multiproduct supply chain networks and

the associated strategic advantages but, also, vertical mergers and the possible synergies. It

would also be illuminating to conduct additional sensitivity analysis exercises on the models

proposed in this paper and to evaluate different supply chain network configurations. Finally,
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it would be interesting to explore supply chain network integration synergies when particular

link total cost functions are no longer convex but are, rather, concave.
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