
A System-Optimization Model for Multiclass
Human Migration with Migration Costs and

Regulations Inspired by the Covid-19 Pandemic

Giorgia Cappello∗, Patrizia Daniele† and Anna Nagurney‡

Minimax Theory and Applications 6(2), (2021), pp. 353-364.

Abstract

In the last several decades, the main causes of human migration have included: poverty,
war and political strife, climate change, tsunamis, earthquakes, as well as economic and
educational possibilities. In this paper, we present a system-optimized network model for
multiple migration classes with migration costs and regulations inspired by the Covid-19
pandemic. We derive the variational inequality formulation associated with the system-
optimization problem which consists of maximizing the total societal welfare. Lagrange
analysis is also performed in order to obtain a precise evaluation of the multiclass human
migration phenomenon. This work adds to the literature on system-optimization of human
migration in the presence of regulations and with the explicit inclusion of migration costs.

Keywords: human migration, regulations, Covid-19 pandemic, nonlinear op-
timization, variational inequalities, Lagrange theory

1 Introduction

The International Organization for Migration (IOM) defines a migrant as any per-
son who is moving or has moved across an international border or within a state
regardless of legal status, whether the movement is voluntary or involuntary, what
the causes for the movement are, and what the length of the stay is ([15]).

According to the United Nations High Commissioner for Refugees ([39]), by
the end of 2019 the number of people forcibly displaced due to war, conflict, perse-
cution, human rights violations, poverty and economic inequality but also climate
change and natural disasters, had grown to 79.5 million. That number reveals an
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increase from the number of 2018 displaced people of 70.8 million and it is the
highest number on record according to available data.

The vulnerability of millions of international migrants may be exacerbated in
crisis situations, as actually is the case now with the COVID-19 (COrona VIrus
Disease 2019) pandemic (see [35], [40]). The infectious respiratory disease emerged
in Wuhan, China, and rapidly spread around the world, posing enormous health,
economic, environmental, and social challenges to the entire human population
(see [5], [12]). More specifically, the COVID-19 pandemic has also affected global
mobility in the form of blockages, restrictions, and travel disruptions, as risk miti-
gation measures are being implemented by numerous countries (see [11]). Indeed,
the International Organization for Migration (IOM) reports that between 11 March
2020, when the World Health Organization (WHO) declared COVID-19 a pan-
demic, and 8 June 2020, the total number of movement restrictions implemented
around the world has increased to more than 65,000 (see [18]). This pandemic
has highlighted even more how effectively managing migration flows must be a
priority for all governments in the world.

Managing human migration in the age of “super-diversity” (see [37]) means
focusing on the diversified flow of migration classes that differ in legal status,
country of origin, or length of stay, and may include highly skilled workers. As
a consequence, identifying policies and regulations to address the variety of mi-
gration flows is essential. As an example, this may include regulations in order to
reduce the vulnerability of (irregular) migrant workers (see [38]).

The United Nations, Department of Economic and Social Affairs, emphasizes
that economic and social factors are the main reasons why people migrate but, on
the other hand, if supported by appropriate policies, migration can contribute to
inclusive and sustainable economic growth and development in both origin and
destination nodes (International Migration Policies: Data Booklet, 2017). The
Organization for Economic Co-operation and Development (OECD) countries in
response to the COVID-19 pandemic worked on the development of short-term
policy responses and longer-term challenges to migration management (see [34]).
Furthermore, migration interactions in all dimensions of economic and social de-
velopment will be the key to achieving the 2030 Sustainable Development Goals
(SDGs) adopted by the member states of the United Nations. In the 2030 Agenda,
9 out of the 17 goals contain targets and indicators that are related to migration or
mobility (see [16]).

1.1 Literature Review and Our Contributions

In the literature the migration topic has been widely addressed. Nagurney (see
[27]) presents a human migration model based on networks and establishes the
equilibrium conditions, which are characterized by a quadratic programming prob-
lem. Subsequently, Nagurney and Pan (see [33]) establish the relationship between
projected dynamical systems and evolutionary variational inequalities to model the
dynamic adjustment of a socio-economic process in the context of human migra-
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tion.
Bulavsky and Kalashnikov (see [1]), in turn, introduce conjectural variations

equilibria, in which the influence coefficients of each agent affects the structure
of the Nash equilibrium. Isac, Bulavsky, and Kalashnikov (see [19]), later exam-
ine a model in which the potential migration groups take into account not only
the current difference between the utility function values at the destination and the
original locations, but also the possible variations in the utility values implied by
the change of population volume due to the migration flow. In this case, they con-
sider not perfect competition but a generalized Cournot-type model. Kalashnikov
and Kalashnykova (see [20]) propose a model in which the conjectural variations
coefficients depend on the total population at the destination and of its group’s
fraction. Moreover, the authors characterize the equilibrium with a solution of an
appropriate variational inequality problem. In [6] Cojocaru formulates the human
migration problem in terms of a transportation network and applies the double-
layer dynamics theory. Cui and Bai (see [9]) present a mathematical model in
which the population density varies when the spatial movement of individuals is
a function of the departure and arrival locations. They apply the theories of posi-
tive operators and positive semigroups and then study the asymptotic behavior of
solutions of migration epidemic models as time goes to infinity.

In [41] the authors make a comparison between human migration and wealth
distribution. They present a model with equations for the population density and
for the wealth distribution. It is based on perturbation methods and on the spec-
tral properties of the linearized operators. The authors prove that, in the absence
of cross diffusion terms, the dynamics of solutions can be described by traveling
wave solutions of the corresponding reaction diffusion systems of equations. They
also show the persistence of such solutions for sufficiently small cross diffusion
coefficients.

Causa, Jadamba, and Raciti (see [3]), in turn, include uncertainty in the utility
functions, in the migration cost functions, and in the populations. In [8] the authors
present a model for the spreading of innovations in prehistoric times which is gov-
erned by human movements. They consider a spatial network where the diffusion
of innovations changes in time, when the agents change their positions and also
propose a stochastic simulation approach.

Nagurney and Daniele (see [29]) present the first multiclass human migration
network model, with alternative conservation of flow equations and additional con-
straints to capture distinct types of regulations. They also conduct a Lagrange anal-
ysis. That model, in contrast to the model in this paper, is a user-optimized one.
Nagurney, Daniele, and Nagurney (see [32]) construct a general, multiclass, multi-
path human migration model with governmentally imposed regulations associated
with refugees. Further, they provide qualitative properties and then establish, via
a supernetwork transformation, that the model(s) are isomorphic to traffic network
equilibrium models with fixed demands. This paper is notable since the model
allows for migration paths to consist of more than a single link. It is also a user-
optimized model.
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Nagurney, Daniele, and Cappello (see [30]) prove that, although migrants be-
have in a user-optimized manner, it is possible to achieve a system-optimum for
a multiclass human migration network by using policy interventions in the form
of subsidies. Such policy interventions allow governmental decision-makers to
moderate the flow of migrants, while enhancing societal welfare. Their model is
the first to apply a system-optimized perspective to human migration. That model,
however, does not include migration costs between origin and destination nodes, as
our new model in this paper does. Nagurney, Daniele, and Cappello (see [31]) in-
troduce capacities on population locations and demonstrate that the results of their
previous paper hold; that is, that governments can achieve system-optimization
through the use of appropriate subsidies of population locations. Then, migrants
behaving individually and selfishly in a user-optimized manner, upon appropriate
subsidization, will reallocate themselves in a manner that is optimal from a system
(societal) perspective.

It is also worth mentioning that some network equilibrium models of human
migration have even been applied to the migration of animals in ecology (see [26]
and [24]). Rahmati and Tularam (see [14]) provide a critical review of human
migration models and note that migration is related to economic factors such as
available opportunities and constraints in rural and urban areas, job access, and
labor absorption in different localities.

In this paper, we extend the system-optimized models of human migration
noted above to include novel utility functions, migration costs, and more general
regulations. Specifically, in the objective function we take into account the changes
in the utility functions of the multiple classes caused by the migratory flows and
policies adopted by governments. Further, in determining the optimal flows, we
consider the government policies a priori, thanks to a suitable coefficient influence
vector w. Finally, we include the capacities and the regulations of the flows in a
single formulation. Our aim is to find a system-optimized solution, which is a so-
cial optimum, in that an organization, such as the United Nations, maximizes the
attractiveness of the origin countries, which for an individual origin is given by the
sum of its utility and its expected increment of utility value, with respect to the
destination one, for each migration class and each pair of countries (or locations).
We also provide an equivalent formulation of the variational inequality by means
of Lagrange theory. Several numerical examples are presented and analyzed.

2 Presentation of the Model

As in [2], we consider a network consisting of n nodes, that are countries or, more
generally, locations, and H classes of the population. As depicted in Fig.1, the n lo-
cations are both origin nodes (where migrants are initially located) and destination
nodes (where the migrants may be interested in migrating to).
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Figure 1: Network structure of the multiclass human migration model

We assume that at each location i; i = 1, . . . ,n, there is an initial fixed popula-
tion of the general class k, denoted by p̄k

i . We denote the nonnegative population
of migrant class k at node i by pk

i and by f k
i j we denote the nonnegative migration

flow out of the node i, and into the node j of the network, with i 6= j. It means that
if a volume of population of a typical class decides to migrate, then the destination
node differs from the origin one; otherwise, it remains in the same origin node.
Hence, the volume of population of each class k at each node i, after the migration
takes place, is given by the following conservation of flow equations:

pk
i = p̄k

i −
n

∑
j=1
j 6=i

f k
i j +

n

∑
j=1
j 6=i

f k
ji, i = 1, ...,n; k = 1, . . . ,H. (1)

We consider that the sum of the flows out of each node in the network, must not
exceed the initial population in that node; in other words:

n

∑
j=1
j 6=i

f k
i j ≤ p̄k

i , i = 1, . . . ,n; k = 1, . . . ,H. (2)

We group the populations for all the migration classes k, in each location i, into the
vector population p and the migration flows of each migration class k, from each
origin node i to each destination node j into the vector flow f ; namely,

p = (pk
i ) i=1,...,n

k=1,...,H
∈ RnH

+ , f = ( f k
i j) i, j=1,...,n, i6= j

k=1,...,H
∈ Rn(n−1)H

+ . (3)

Furthermore, as in [31], we introduce the population capacity constraint for
each node in the network. Here, unlike [31], we consider that the total population
at each node i must not exceed the capacity, as follows:

H

∑
k=1

pk
i ≤ capi, i = 1, . . . ,n, (4)
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where capi, for all nodes i, is the population capacity. The aforementioned con-
straints ensure that all the nodes are not overpopulated.

We assume that the sum of the capacities is greater than the total population of
the network of all the classes of migrants.

We now introduce the origin and destination utility functions; specifically, uk
i

and vk
j, which capture the attractiveness from an economic and/or political and/or

social point of view of the origin node i and of the destination node j, respectively,
as perceived by a single individual of the migration class k. In other words, such
functions reflect the liveability of each node of the network as perceived by an indi-
vidual of the migration class k; hence, these functions are expressed in a different
way depending on whether the node is analyzed as an origin or as a destination
one. We assume that the uk

i and vk
j are functions of the entire population vector:

uk
i = uk

i (p) and vk
j = vk

j(p), i, j = 1, . . . ,n; k = 1, . . . ,H. Such functions are assumed
to be continuously differentiable and concave.

To interpret the concavity condition on the utility functions in terms of applica-
tions, we assume that, without loss of generality, there is a population threshold at
which utility functions stop growing. The excess of population leads to a decrease
in the economic growth of the node (see [21]) due to an increase in pollution, com-
petition for jobs, housing, etc. (see [23]).

For each individual of class k, we introduce the net utility function, which is
given by the difference between the individual origin and destination utility func-
tions. Hence, the total net utility functions for the class k, for all k = 1, . . . ,H, with
respect to the route from i to j are defined as:

Uk
i j(p, f ) = (uk

i (p)− vk
j(p))× f k

i j, i, j = 1, . . . ,n;k = 1, . . . ,H, (5)

and are assumed to be continuously differentiable and concave.
Let ck

i j( f ) and Ck
i j( f ) denote the unit migration cost function and the total mi-

gration cost function between locations i and j, respectively. We have:

Ck
i j( f ) = ck

i j( f )× f k
i j, i, j = 1, . . . ,n; k = 1, . . . ,H. (6)

Such costs are assumed to be convex and continuously differentiable. This assump-
tion is justified by the concept of diminishing marginal utility without requiring
utility functions, according to which, roughly speaking, averages are better than
the extremes.

In our model we assume that there is a government or an organization of gov-
ernments, such as the United Nations, whose interest is to guarantee the respect of
the right to choose migration and at the same time a high level of welfare for each
individual living in each location node, in order to improve the quality of life. Each
node in the network differs in terms of migration policies and ideologies, how it is
experienced by a class, and how ready it is to integrate immigrants (see [13]).

It is reasonable to suppose that the migration policies that are adopted in the
various nodes of the network by governments influence the migration routes. Such
policies can be, for example, inclusive or not, and depend more generally on

6



choices based on the economic, social, and/or political features of the network
nodes.

Hence, we introduce for each possible migration route from node i to node j,
the influence coefficients wk−

i j and wk+
i j , which allow us to take into account the

migration policies implemented in nodes i and j as a consequence of the utility
changes when individuals of the class k choose to migrate from node i towards
node j, respectively. We assume that such influence coefficients range in the inter-
val [−1,1]. When the influence coefficient value is close to the upper bound 1, it is
indicative of a more inclusive policy. In other words, these coefficients in the ob-
jective function will be related to the changes of the utility caused by the migration
flows.

Therefore, considering any origin node i and any other node j in the network,
the possible variations of the utility functions uk

i and vk
j and the subsequent policies

undertaken by the governments in the aforementioned nodes will be considered in
determining the optimal flows, respectively, through the following terms:

δ
−
i (p, f ) =

H

∑
k=1

 n

∑
j=1
j 6=i

wk−
i j f k

i j

× ∂uk
i (p)

∂ pk
i ,

, i = 1, . . . ,n, (7)

and

δ
+
j (p, f ) =

H

∑
k=1

 n

∑
i=1
i6= j

wk+
i j f k

i j

× ∂vk
j(p)

∂ pk
j,

, j = 1, . . . ,n. (8)

Remark 2.1 Governments hope to minimize or maximize the terms (7) and (8)
since they represent, respectively, a deficit or a surplus to the starting utility func-
tions depending on both the sign of the derivatives of the utility functions (which
we assume to be concave) and the sign of the influence coefficients, that are the
variation in attractiveness in terms of welfare, quality of life, and so on of a node
with respect to the population and the adopted migration policies.

In Table 1 we summarize the notation adopted for the model. Let K denote the
feasible set such that:

K =
{
(p, f ) ∈ Rn2H |(1), (2), (3), (4) hold

}
. (9)

2.1 Regulations

As mentioned in the introduction, a global emergency situation, such as the COVID-
19 pandemic, highlights the importance of assessing and analyzing the manage-
ment of human migration, in the event that flow regulations are applied. For this
reason, in our model we introduce, as in [29], the flow regulations in terms of
constraints.

Suppose that the typical destination node j applies a restriction R j on the flows
of some classes k coming from some nodes i of the network, which we will group

7



Symbol Definition
p̄k

i Initial population of class k in location i
pk

i Population at location i of class k
f k
i j Migration flow from i to j of class k

vk
j(p) Destination utility function of location j as perceived by an individual of class k

uk
i (p) Origin utility function of location i as perceived by an individual of class k

Uk
i j Total net utility function for class k with respect to the route from i to j

ck
i j( f ) Unit migration cost from i to j for an individual of class k

Ck
i j( f ) Total migration cost from i to j for class k

wk±
i j ∈ [−1,1] Policy influence coefficients

Table 1: Functions, parameters, and decision variables of the model

together in the set C j of pairs (i,k) to which restrictions are imposed by j, as
follows:

∑
(i,k)∈C j

f k
i j ≤ R j. (10)

As noted in [29], the (10) restrictions, for each node j represent the most general
case of flow regulations which, depending on the adopted policies, may be more
specific, such as:

• restrictions for a single class k̄ and coming from a single node in the network
ī:

f k̄
ī j ≤ R j, (11)

• restrictions for a single class k̄

∑
(i,k̄)∈C j

f k̄
i j ≤ R j, ∀ j, (12)

• restrictions for every class coming from origin node ī

∑
(ī,k)∈C j

f k
ī j ≤ R j, ∀ j. (13)

We denote by K1 the feasible with the above regulations as follows:

K1 =
{
(p, f ) ∈ Rn2H | (10) holds

}
. (14)

2.2 The Multiclass Human Migration Network System-Optimization
Problem and its Variational Formulation

The multiclass human migration network system-optimization problem can be ex-
pressed as follows. The cognizant organization seeks to determine the optimal
flows, as well as the optimal populations at each node in the network, subject to

8



the convenience to remain, given by the difference between the total net utility
function and the migration costs and also trying to take into account the choices of
policies by the governments/organization and the potential variations of the utility
function as closely as possible. As a consequence, we are dealing with a system-
optimized model. Therefore, the optimization problem is constructed as follows:

Maximize
H

∑
k=1

n

∑
i=1

n

∑
j=1
j 6=i

[
Uk

i j(p, f )−Ck
i j( f )+δ

−
i (p, f )+δ

+
j (p, f )

]
(15)

subject to: constraints (1), (2), (3), (4), and (10). We introduce the feasible set for
the optimization problem under regulations

K2 =
{
(p, f ) ∈ Rn2H | (1), (2), (3), (4), and (10) hold

}
.

Under the above assumptions, the objective function in (15) is concave and
continuously differentiable and so, using the classical variational theory (see [22]
and [28]), it is easy to prove that an optimal solution for the optimization prob-
lem, denoted by (p∗, f ∗) ∈ K2, satisfies the following variational inequality: find
(p∗, f ∗) ∈K2, such that

−
H

∑
q=1

n

∑
l=1

( H

∑
k=1

n

∑
i=1

n

∑
j=1
j 6=i

∂Uk
i j(p∗, f ∗)

∂ pq
l

+
∂δ

k+
i (p∗, f ∗)

∂ pq
l

+
∂δ

k−
i (p∗, f ∗)

∂ pq
l

)
× (pq

l − pq∗
l )

−
H

∑
q=1

n

∑
l=1

n

∑
s=1
s6=l

( H

∑
k=1

n

∑
i=1

n

∑
j=1
j 6=i

∂Uk
i j(p∗, f ∗)

∂ f q
ls

−
∂Ck

i j( f ∗)

∂ f q
ls

+
∂δ

k+
i (p∗, f ∗)

∂ f q
ls

+
∂δ

k−
i (p∗, f ∗)

∂ f q
ls

)
× ( f q

ls− f q∗
ls )≥ 0, ∀(p, f ) ∈K2. (16)

Applying the well-known results about variational inequalities in finite dimen-
sion (see [22] and [4], [7], [10] and [29]), we can find an equivalent formulation of
the variational inequality using the Lagrange multipliers associated with the con-
straints defining the feasible set K2 and proving the strong duality.

Indeed, variational inequality (16) can be rewritten as a minimization problem,
since, if we denote by V (p, f ) the left-hand side of (16), then we have:

V (p, f )≥ 0 in K2 and min
K2

V (p, f ) =V (p∗, f ∗) = 0.

Now, denoting by λ 1 ∈ RnH
+ , λ 2 ∈ Rn(n−1)H

+ , ε ∈ RnH , ν ∈ RnH
+ , and µ, γ ∈ Rn

+,
the Lagrange multiplier vectors associated with the nonnegativity constraints (3),
and constraints (1), (2), (4), and (10), respectively, we can consider the following
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Lagrange function:

L (p, f ,λ 1,λ 2,ε,ν ,µ,γ) =V (p, f )+
n

∑
i=1

H

∑
k=1

λ
k1
i (−pk

i )

+
n

∑
i=1

n

∑
j=1
j 6=i

H

∑
k=1

λ
k2
i j (− f k

i j)+
n

∑
i=1

H

∑
k=1

εik

pk
i − p̄k

i +
n

∑
j=1
j 6=i

f k
i j−

n

∑
j=1
j 6=i

f k
ji

 (17)

+
n

∑
i=1

H

∑
k=1

νik

 n

∑
j=1
j 6=i

f k
i j− p̄k

i

+
n

∑
i=1

µi

(
H

∑
k=1

pk
i − capi

)
+

n

∑
j=1

γ j

(
∑

(i, j)∈C j

f k
i j−R j

)
.

Making use of the Lagrange theory, if (p∗, f ∗) is a solution to variational inequality
(16), we are able to prove that the following KKT conditions (18)-(19) hold and
vice versa. Moreover, we show that strong duality (22) holds.

Theorem 2.1 The Lagrange multipliers in (17) do exist and, for all i, j = 1, . . . ,n,
and k = 1, . . . ,H, the following conditions hold true:

λ
k1
i (−pk∗

i ) = 0, λ
k2
i j (− f k∗

i j ) = 0, ν ik

 n

∑
j=1
j 6=i

f k∗
i j − p̄k

i

= 0, (18)

µ i

(
H

∑
k=1

pk∗
i − capi

)
= 0, γ j

(
∑

(i, j)∈C j

f k∗
i j −R j

)
= 0, (19)

∂Uk
i j(p∗, f ∗)

∂ pk
i

+
∂δ

k+
i (p∗, f ∗)

∂ pk
i

+
∂δ

k−
i (p∗, f ∗)

∂ pk
i

−λ
k1
i + ε ik +µ i = 0, (20)

∂Uk
i j(p∗, f ∗)

∂ f k
i j

−
∂Ck

i j( f ∗)

∂ f k
i j

+
∂δ

k+
i (p∗, f ∗)

∂ f k
i j

+
∂δ

k−
i (p∗, f ∗)

∂ f k
i j

−λ
k2
i j + ε ik + γ j = 0,

(21)
where λ

1
, λ

2
, ε, ν , µ, γ are the optimal Lagrange multiplier vectors. Moreover,

the strong duality also holds true; namely:

V (p∗, f ∗) = min
K2

V (p, f ) (22)

= max
λ1∈RnH

+ ,λ2∈R2nH
+

ε∈RnH ,ν∈RnH ,µ,γ∈Rn
+

min
(p, f )∈RnH+2nH

L (p, f ,λ 1,λ 2,ν ,µ,γ).

Proof. See Theorem 3.1 in [4].

The existence of at least one solution to variational inequality (16) is guaran-
teed from the classical theory of variational analysis (see Th.3.1. in [22]), since
the feasible set is compact and the function that enters the variational inequality is
continuous (see [25] for additional existence results).
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3 Numerical Examples

In this section we present two illustrative examples for the optimization problem
(15), without and with regulations, respectively. Specifically, for the regulation
model three different situations are analyzed.

For each example we consider two migration classes and two locations in the
network, as depicted in Figure 2.

Locations

Migration class

→Migration flow2

1

2

1

Figure 2: Network structure of 2-class human migration model.

Let us consider the data as in Table 2, that are the common data for the two
examples.

We also introduce the population node capacities cap1 = 150, cap2 = 180 and,
consequently, the capacity constraints as follows:

p1
1 + p2

1 ≤ 150 (23)

p1
2 + p2

2 ≤ 180. (24)

In the case without regulations, the feasible set K (9), is given by:

K =
{
(p, f ) ∈ R8

+ : p1
1 = 40− f 1

12 + f 1
21; p1

2 = 30− f 1
21 + f 1

12,

p2
1 = 25− f 2

21 + f 2
12, p2

2 = 15− f 2
21 + f 2

12 f 1
12 ≤ 40, f 1

21 ≤ 30,

f 2
12 ≤ 25, f 2

21 ≤ 15; p1
1 + p2

1 ≤ 150, p1
2 + p2

2 ≤ 180
}
. (25)

The solution to variational inequality (16) is:

(p1
1
∗
, p1

2
∗
, p2

1
∗
, p2

2
∗
, f 1

12
∗
, f 1

21
∗
, f 2

12
∗
, f 2

21
∗
)= (45.92, 24.07, 33.27, 6.72, 0, 5.92, 0, 8.27).

As we can see from the solution, for both migrant classes, there is no flow from
node 2 to node 1.

We now introduce the regulation constraint (13), for every class coming from
the origin node 2, as follows:

f 1
21 + f 2

21 ≤ R1. (26)

where R1 is the typical restriction applied by the destination node 1. We give three
different values to R1 and, then, make a comparison with the solution obtained in

11



Origin utility functions u1
1 =−0.54p1

1−0.11p1
2−0.17p2

1
u1

2 = 0.49p1
2−0.39p2

2
u2

1 = 0.26p2
2−1.77p2

1−0.47p1
1

u2
2 = p1

2 +0.08p2
1 +0.64p2

2
Destination utility functions v1

1 = 0.02p1
1

v1
2 = 0.02p2

2−0.51p1
2

v2
1 = p1

2
v2

2 = 0.15p1
2 + p2

2
Migration costs c1

12 = 5.54 f 1
12

c1
21 = 5.08 f 1

21
c2

12 = 1.72 f 2
12

c2
21 = 5.00 f 2

21
Initial populations p̄1

1 = 40
p̄1

2 = 30
p̄2

1 = 25
p̄2

2 = 15
Influence coefficients w1−

12 = 0.3
w1−

21 =−0.002
w1+

12 = 0.26
w1+

21 = 0.9
w2−

12 =−0.9
w2−

21 = 0.15
w2+

12 = 0.4
w2+

21 = 0.2

Table 2: Data for the two numerical examples
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the case without regulations. In the case with regulations, the feasible set K1 (14)
is:

K1 =
{
(p, f ) ∈ R8

+ : p1
1 = 40− f 1

12 + f 1
21; p1

2 = 30− f 1
21 + f 1

12,

p2
1 = 25− f 2

21 + f 2
12, p2

2 = 15− f 2
21 + f 2

12 f 1
12 ≤ 40, f 1

21 ≤ 30,

f 2
12 ≤ 25, f 2

21 ≤ 15; p1
1 + p2

1 ≤ 150, p1
2 + p2

2 ≤ 180; f 1
21 + f 2

21 ≤ R1
}
.(27)

We consider three cases:

- Case 1, R1 = 5: The solution to variational inequality (16) is:

(p1
1
∗
, p1

2
∗
, p2

1
∗
, p2

2
∗
, f 1

12
∗
, f 1

21
∗
, f 2

12
∗
, f 2

21
∗
)

= (41.21, 28.78, 28.78, 11.21, 0, 1.21, 0, 3.78).

- Case 2, R1 = 10: The solution to variational inequality (16) is:

(p1
1
∗
, p1

2
∗
, p2

1
∗
, p2

2
∗
, f 1

12
∗
, f 1

21
∗
, f 2

12
∗
, f 2

21
∗
)

= (43.77, 26.22, 31.22, 8.77, 0, 3.77, 0, 6.22).

- Case 3, R1 = 37: The solution to variational inequality (16) is:

(p1
1
∗
, p1

2
∗
, p2

1
∗
, p2

2
∗
, f 1

12
∗
, f 1

21
∗
, f 2

12
∗
, f 2

21
∗
)

= (45.91, 24.08, 33.27, 6.72, 0, 5.91, 0, 8.27).

As we can see from the solution, also in these three cases, for both classes of
population, there is no flow from node 2 to node 1. We obtain a reduction of the
flows from node 2 to 1 for every migration class in each cases in which restrictions
are introduced.
Note that, when R1 increases, which means the movement possibility in the net-
work increases, then also the optimal flows for both classes from node 2 to node 1
increase till the values without regulations.

The variational inequalities of the optimization problems both without and with
regulations were solved using the Projection-Contraction method (see [36]). The
algorithm was coded using Matlab and was run on a PC with 8 GB RAM, Asus
Intel (R) Core (TM) i5-10210U CPU@1.60 GHz.

4 Conclusions and Further Research

The Covid-19 pandemic, a global healthcare disaster, has dramatically influenced
the movement of humans over space and time in 2020. It has, also, impacted inter-
national migration as governments institute regulations banning travel. The world
has seen immense migratory flows over the past decades with migrants seeking
more amenable locations for themselves and their families. The topic of human
migration has assumed further attention during the pandemic.

13



Migration can have positive as well as negative effects on the lives of the mi-
grants. Positive aspects include: potentially the reduction of unemployment, a
better quality of life, learning about a new culture, customs, and languages, and/or
economic growth of the region. On the other hand, negative effects can include:
increasing competition for jobs; possibly, growth in poverty, criminality, and ex-
ploitation, as well as pollution.

In this paper, we introduced a network-based model for multiclass human mi-
gration with the objective of improving the system, that is, the society. Unlike pre-
vious system-optimization models for human migration, the new model includes
migration costs as well as novel utility functions. We, nevertheless, retain regula-
tions introduced earlier by the authors on the migratory flows. The model is studied
qualitatively and numerical examples also provided.

In future research it would be interesting to compare the system-optimized so-
lution of this model with the user-optimized one; namely, from the migrant’s point
of view. Furthermore, migration could be analyzed as a noncooperative game, with
appropriate strategies of the players considering the levels of difficulty in reaching
a new place (due, for instance, to the national regulations).
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[13] Güngör, D., & Strohmeier, D. (2020). Contextualizing immigrant and refugee
resilience: cultural and acculturative perspectives. In Contextualizing Immi-
grant and Refugee Resilience. Springer, Cham, 1–7.

[14] Hoda Rahmati, S., & Tularam, G. A. (2017). A critical review of human
migration models. Climate Change, 3(12), 924-952.

[15] International Organization for Migration (2019). Glossary on migration.
Geneva, Switzerland.

[16] International Organization of Migration (2020). Migration data portal. Avail-
able at: https://migrationdataportal.org/themes/sustainable-development-
goals-sdgs

[17] International Organization for Migration’s Global Migration Data Analysis
Centre, https://gmdac.iom.int/

[18] International Organization of Migration (2020). DTM-Covid19
Travel Restrictions Output — 8 June 2020. Available at
https:migration.iom.intreportsdtm-covid19-travel-restrictions-output-
%E2%80%94-8-june-2020

[19] Isac, G., Bulavsky, V. A., & Kalashnikov, V. V. (2013). Complementarity,
Equilibrium, Efficiency and Economics (Vol. 63). Springer Science & Busi-
ness Media.

[20] Kalashnikov, V., & Kalashnykova, N. (2006). Simulation of a conjectural
variations equilibrium in a human migration model. International Journal of
Simulation, 7(9), 26–39.

15



[21] Kelley, A. C., & Schmidt, R. M. (1999). Economic and demographic change:
A synthesis of models, findings, and perspectives. Duke Economics Working
Paper, Duke University, North Carolina, 99–01.

[22] Kinderlehrer, D., & Stampacchia, G. (2000). An Introduction to Variational
Inequalities and Their Applications (Vol. 31): SIAM Publications, Phildel-
phia, PA, USA, 2000.

[23] La Torre, D., Liuzzi, D., & Marsiglio, S. (2019). The optimal population
size under pollution and migration externalities: a spatial control approach.
Mathematical Modelling of Natural Phenomena, 14(1), 104.
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