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Abstract: In this paper, we develop a new supply chain network model with multiple

decision-makers associated at different tiers and with multiple transportation modes

for shipment of the good between tiers. The model formulation captures supply-

side risk as well as demand-side risk, along with uncertainty in transportation and

other costs. The model also incorporates the individual attitudes towards disruption

risks among the manufacturers and the retailers, with the demands for the product

associated with the retailers being random. We present the behavior of the various

decision-makers, derive the governing equilibrium conditions, and establish the finite-

dimensional variational inequality formulation. We also propose a weighted supply

chain performance and robustness measure based on our recently derived network

performance/efficiency measure and provide supply chain examples for which the

equilibrium solutions are determined along with the robustness analyses. This paper

extends previous supply chain research by capturing supply-side disruption risks,

transportation and other cost risks, and demand-side uncertainty within an integrated

modeling and robustness analysis framework.
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1. Introduction

Supply chain disruptions and the associated risk are major topics in theoreti-

cal and applied research, as well as in practice, since risk in the context of sup-

ply chains may be associated with the production/procurement processes, the trans-

portation/shipment of the goods, and/or the demand markets. In fact, Craighead,

Blackhurst, Rungtusanatham, and Handfield (2007) have argued that supply chain

disruptions and the associated operational and financial risks are the most pressing

issue faced by firms in today’s competitive global environment. Notably, the focus

of research has been on “demand-side” risk, which is related to fluctuations in the

demand for products, as opposed to the “supply-side” risk, which deals with uncer-

tain conditions that affect the production and transportation processes of the supply

chain. For a discussion of the distinction between these two types of risk, see Snyder

(2003).

For example, several recent major disruptions and the associated impacts on the

business world have vividly demonstrated the need to address supply-side risk with

a case in point being a fire in the Phillips Semiconductor plant in Albuquerque,

New Mexico, causing its major customer, Ericsson, to lose $400 million in potential

revenues. On the other hand, another major customer, Nokia, managed to arrange

alternative supplies and, therefore, mitigated the impact of the disruption (cf. La-

tour (2001)). Another illustrative example concerns the impact of Hurricane Katrina,

with the consequence that 10% - 15% of total U.S. gasoline production was halted,

which not only raised the oil price in the U.S., but also overseas (see, e. g., Cana-

dian Competition Bureau (2006)). Moreover, the world price of coffee rose 22% after

Hurricane Mitch struck the Central American republics of Nicaragua, Guatemala,

and Honduras, which also affected supply chains worldwide (Fairtrade Foundation

(2002)). As summarized by Sheffi (2005) on page 74, one of the main characteris-

tics of disruptions in supply networks is “the seemingly unrelated consequences and

vulnerabilities stemming from global connectivity.” Indeed, supply chain disruptions

may have impacts that propagate not only locally but globally and, hence, a holistic,

system-wide approach to supply chain network modeling and analysis is essential in

order to be able to capture the complex interactions among decision-makers.
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Indeed, rigorous modeling and analysis of supply chain networks, in the presence of

possible disruptions is imperative since disruptions may have lasting major financial

consequences. Hendricks and Singhal (2005) analyzed 800 instances of supply chain

disruptions experienced by firms whose stocks are publicly traded. They found that

the companies that suffered supply chain disruptions experienced share price returns

33 percent to 40 percent lower than the industry and the general market benchmarks.

Furthermore, share price volatility was 13.5 percent higher in these companies in

the year following a disruption than in the prior year. Based on their findings, it

is evident that only well-prepared companies can effectively cope with supply chain

disruptions. Wagner and Bode (2007), in turn, designed a survey to empirically study

the responses from executives of firms in Germany regarding their opinions as to the

factors that impact supply chain vulnerability. The authors found that demand-side

risks are related to customer dependence while supply-side risks are associated with

supplier dependence, single sourcing, and global sourcing.

The goal of supply chain risk management is to alleviate the consequences of

disruptions and risks or, simply put, to increase the robustness of a supply chain.

However, there are very few quantitative models for measuring supply chain robust-

ness. For example, Bundschuh, Klajan, and Thurston (2003) discussed the design of

a supply chain from both reliability and robustness perspectives. The authors built a

mixed integer programming supply chain model with constraints for reliability and ro-

bustness. The robustness constraint was formulated in an implicit form: by requiring

the suppliers’ sourcing limit to exceed a certain level. In this way, the model builds

redundancy into a supply chain. Snyder and Daskin (2005) examined supply chain

disruptions in the context of facility location. The objective of their model was to

select locations for warehouses and other facilities that minimize the transportation

costs to customers and, at the same time, account for possible closures of facilities

that would result in re-routing of the product. However, as commented in Snyder and

Shen (2006), “Although these are multi-location models, they focus primarily on the

local effects of disruptions.” Santoso, Ahmed, Goetschalckx, and Shapiro (2005) ap-

plied a sample average approximation scheme to study the stochastic facility location

problem by considering different disruption scenarios.
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Tang (2006a) also discussed how to deploy certain strategies in order to enhance

the robustness and the resiliency of supply chains. Kleindorfer and Saad (2005), in

turn, provided an overview of strategies for mitigating supply chain disruption risks,

which were exemplified by a case study in a chemical product supply chain. For a

comprehensive review of supply chain risk management models to that date, please

refer to Tang (2006b).

To-date, however, most supply disruption studies have focused on a local point of

view, in the form of a single-supplier problem (see, e. g., Gupta (1996) and Parlar

(1997)) or a two-supplier problem (see, e. g., Parlar and Perry (1996)). Very few

papers have examined supply chain risk management in an environment with multi-

ple decision-makers and in the case of uncertain demands (cf. Tomlin (2006)). We

believe that it is imperative to study supply chain risk management from a holistic

point of view and to capture the interactions among the multiple decision-makers in

the various supply chain network tiers. Indeed, such a perspective has also been ar-

gued by Wu, Blackhurst, and Chidambaram (2006), who focused on inbound supply

risk analysis. Towards that end, in this paper, we take an entirely different per-

spective, and we consider, for the first time, supply chain robustness in the context

of multi-tiered supply chain networks with multiple decision-makers under equilib-

rium conditions. For a plethora of supply chain network equilibrium models and the

associated underlying dynamics, see the book by Nagurney (2006a).

Of course, in order to study supply chain robustness, an informative and effective

performance measure is first required. Beamon (1998, 1999) reviewed the supply chain

literature and suggested directions for research on supply chain performance measures,

which should include criteria on efficient resource allocation, output maximization,

and flexible adaptation to the environmental changes (see also, Lee and Whang (1999),

Lambert and Pohlen (2001), and Lai, Ngai, and Cheng (2002)). We emphasize that

different supply performance measures can be devised based on the specific nature of

the problem. In any event, the discussion here is not meant to cover all the existing

supply chain performance measures. Indeed, we are well aware that it is a daunting

task to propose a supply chain performance measure that covers all aspects of supply

chains. We believe that such a discussion will be an ongoing research topic for decades
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to follow. In this paper, we study supply chain robustness based on a novel network

performance measure proposed by Qiang and Nagurney (2008), which captures the

network flows, the costs, and the decision-makers’ behavior under network equilibrium

conditions.

In particular, the model developed in this paper extends the supply chain model

of Nagurney, Dong, and Zhang (2002) with consideration of random demand (cf.

Nagurney, Cruz, Dong, and Zhang (2005)). In order to study supply chain robustness,

the new model contains the following novel features:

• We associate each process in a supply chain with random cost parameters to

represent the impact of disruptions to the supply chain.

• We extend the aforementioned supply chain models to capture the attitude of

the manufacturers and the retailers towards disruption risks.

• We propose a weighted performance measure to evaluate different supply chain

disruptions.

• Different transportation modes are considered in the model (see also, e.g., Dong,

Zhang, and Nagurney (2002) and Dong, Zhang, Yan, and Nagurney (2005)). In

the multimodal transportation supply chain, alternative transportation modes

can be used in the case of the failure of a transportation mode. Indeed, many

authors have emphasized that redundancy needs to be considered in the design

of supply chains in order to prevent supply chain disruptions. For example,

Wilson (2007) used a system dynamic simulation to study the relationship be-

tween transportation disruptions and supply chain performance. The author

found that the existence of transportation alternatives significantly improved

supply chain performance in the case of transportation disruptions.

In this paper, we assume that the probability distributions of the disruption re-

lated cost parameters are known. This assumption is not unreasonable given today’s

advanced information technology and increasing awareness of the risks among man-

agers. A great deal of disruption related information can be obtained from a careful
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examination and abstraction of the relevant data sources. Specifically, as indicated

by Sheffi (2005) on page 55, “... as investigation boards and legal proceedings have

revealed, in many cases relevant data are on the record but not funneled into a useful

place or not analyzed to bring out the information in the data.” Moreover, Holmgren

(2007) also discussed ways to improve prediction of disruptions, using, for example:

historical data analysis, mathematical modeling, and expert judgments. Furthermore,

we assume that the random cost parameters are independent.

The organization of this paper is as follows. In Section 2, we present the model of

a supply chain network faced with (possible) disruptions and in the case of random

demands and multiple transportation modes. In Section 3, we provide a definition of

a weighted supply chain performance measure with consideration of robustness. In

Section 4, we present numerical examples in order to illustrate the model and concepts

introduced in this paper. The paper concludes with Section 5, which summarizes the

results obtained and provides suggestions for future research.

2. The Supply Chain Model with Disruption Risks and Random Demands

The topology of the supply chain network is depicted in Figure 1.

The supply chain model consists of m manufacturers, with a typical manufacturer

denoted by i, n retailers with a typical retailer denoted by j, and o demand markets

with a typical demand market denoted by k. Furthermore, we assume that there are g

transportation modes from manufacturers to retailers, with a typical mode denoted by

u and there are h transportation modes between retailers and demand markets, with

a typical mode denoted by v. Typical transportation modes may include trucking,

rail, air, sea, etc. By allowing multiple modes of transportation between successive

tiers of the supply chain we also generalize the earlier models of Dong, Zhang, and

Nagurney (2002) and Dong, Zhang, Yan, and Nagurney (2005).

Manufacturers are assumed to produce a homogeneous product, which can be

purchased by retailers, who, in turn, make the product available to demand markets.

Each process in the supply chain is associated with some random parameters that

affect the cost functions. The relevant notation is summarized in Table 1.
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Table 1: Notation for the Supply Chain Network Model

Notation Definition
q vector of the manufacturers’ production outputs with components:

q1, . . . , qm

Q1 mng-dimensional vector of product shipments between
manufacturers and retailers via the transportation modes with
component iju denoted by qu

ij

Q2 noh-dimensional vector of product shipments between retailers
and demand markets via the transportation modes with component jkv
denoted by qv

jk

α m-dimensional vector of nonnegative random parameters with αi

being the random parameter associated with the production cost
of manufacturer i and the corresponding cumulative distribution
function is given by Fi(αi)

β mng-dimensional vector of nonnegative random parameters with
βu

ij being the random parameter associated with the transportation
cost of manufacturer i and retailer j via mode u and the
corresponding cumulative distribution function is given by Fu

ij(β
u
ij)

η n-dimensional vector of nonnegative random parameters with ηj

being the random parameter associated with the handling cost of
retailer j and the corresponding cumulative distribution function is
given by Fj(ηj)

γ n-dimensional vector of shadow prices associated with the
retailers with component j denoted by γj

θ m-dimensional vector of nonnegative weights with θi reflecting
manufacturer i’s attitude towards disruption risks

$ n-dimensional vector of nonnegative weights with $j reflecting
retailer j’s attitude towards disruption risks

fi(q, αi) production cost of manufacturer i with random parameter αi

≡ fi(Q
1, αi)

F̂i(q) expected production cost function of manufacturer i with marginal

≡ F̂i(Q
1) production cost with respect to qu

ij denoted by ∂F̂i(Q
1)

∂qu
ij

V Fi(Q
1) variance of the production cost of manufacturer i with

marginal with respect to qu
ij denoted by ∂V Fi(Q

1)
∂qu

ij
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Notation Definition
cu
ij(q

u
ij, β

u
ij) transaction cost between manufacturer i and retailer j via

transportation mode u with the random parameter βu
ij

Ĉu
ij(q

u
ij) expected transaction cost between manufacturer i and

retailer j via transportation mode u with marginal

transaction cost denoted by
∂Ĉu

ij(q
u
ij)

∂qu
ij

V Cu
ij(q

u
ij) variance of the transaction cost between manufacturer i

and retailer j via transportation mode u with marginal

denoted by
∂V Cu

ij(q
u
ij)

∂qu
ij

cj(Q
1, Q2, ηj) handling cost of retailer j with random parameter ηj

Ĉ1
j (Q1, Q2) expected handling cost of retailer j with marginal handling cost with

respect to qu
ij denoted by

∂Ĉ1
j (Q1,Q2)

∂qu
ij

and the marginal handling

cost with respect to qv
jk denoted by

∂Ĉ1
j (Q1,Q2)

∂qv
jk

V C1
j (Q1, Q2) variance of the handling cost of retailer j with

marginal with respect to qu
ij denoted by

∂V C1
j (Q1,Q2)

∂qu
ij

and the

marginal with respect to qv
jk denoted by

∂V C1
j (Q1,Q2)

∂qv
jk

cv
jk(Q

2) unit transaction cost between retailer j and demand market k
via transportation mode v

dk(ρ3) random demand at demand market k with expected value

d̂k(ρ3)
ρ3 vector of prices of the product at the demand markets with ρ3k

denoting the demand price at demand market k

8



Demand Markets

���
1 ���

· · · j · · · ���
n

Manufacturers

Retailers

Transportation Modes

Transportation Modes

���
1 ���

· · · i · · · ���
m

���
1 ���

· · · k · · · ���
o

?

�
�

�
��	

@
@

@
@@R?

PPPPPPPPPPPPPPq

H
H

H
H

H
H

H
HHj

?

�
�

�
��	

��������������)

@
@

@
@@R?

�
�

�
�

�
�

�
���

PPPPPPPPPPPPPPq

H
H

H
H

H
H

H
HHj?

?

Figure 1: The Multitiered Network Structure of the Supply Chain

2.1 The Behavior of the Manufacturers

We assume a homogeneous product economy meaning that all manufacturers pro-

duce the same product which is then shipped to the retailers, who, in turn, sell the

product to the demand markets.

Since the total amount of the product shipped from a manufacturer via different

transportation modes has to be equal to the amount of the production of each manu-

facturer, we have the following relationship between the production of manufacturer

i and the shipments to the retailers:

qi =
n∑

j=1

g∑
u=1

qu
ij, i = 1, . . . ,m. (1)

We assume that disruptions will affect the production processes of manufacturers,

the impact of which is reflected in the production cost functions. For each manufac-

turer i, there is a random parameter αi that reflects the impact of disruption to his
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production cost function. The expected production cost function is given by:

F̂i(Q
1) ≡

∫
αi

fi(Q
1, αi)dFi(αi), i = 1, . . . ,m. (2)

We further denote the variance of the above production cost function as V Fi(Q
1)

where i = 1, . . . ,m.

As noted earlier, we assume that each manufacturer has g types of transportation

modes available to ship the product to the retailers, the cost of which is also subject

to disruption impacts. The expected transportation cost function is given by:

Ĉu
ij(q

u
ij) ≡

∫
βu

ij

cu
ij(q

u
ij, β

u
ij)dFu

ij(β
u
ij), i = 1, . . . ,m; j = 1, . . . , n; u = 1, . . . , g. (3)

We further denote the variance of the above transportation cost function as V Cu
ij(Q

1)

where i = 1, . . . ,m; j = 1, . . . , n; u = 1, . . . , g.

It is well-known in economics that variance may be used to measure risk (see, e.g.,

Silberberg and Suen (2000) with Tomlin (2006) using such an approach to study risks

in applications to supply chains). Therefore, we assign a nonnegative weight θi to the

variance of the cost functions for each manufacturer to reflect his attitude towards

disruption risks. The larger the weight is, the larger the penalty a manufacturer

imposes on the risk, and, therefore, the more risk-averse the manufacturer is.

Let ρu∗
1ij denote the price charged for the product by manufacturer i to retailer j

when the product is shipped via transportation mode u. Hence, manufacturers can

price according to their locations as well as according to the transportation modes

utilized. Each manufacturer faces two objectives: to maximize his expected profit

and to minimize the disruption risks adjusted by his risk attitude. Therefore, the

objective function for manufacturer i; i = 1, . . . ,m can be expressed as follows:

Maximize
n∑

j=1

g∑
u=1

ρu∗
1ijq

u
ij − F̂i(Q

1)−
n∑

j=1

g∑
u=1

Ĉu
ij(q

u
ij)− θi

V Fi(Q
1) +

n∑
j=1

g∑
u=1

V Cu
ij(q

u
ij)


(4)

subject to:

qu
ij ≥ 0, for all i, j, and u.
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The first term in (4) represents the revenue. The second term is the expected

disruption related production cost. The third term is the expected disruption related

transportation cost. The fourth term is the cost of disruption risks adjusted by each

manufacturer’s attitude.

We assume that, for each manufacturer, the production cost function and the

transaction cost function without disruptions are continuously differentiable and con-

vex. It is easy to verify that F̂i(Q
1), V Fi(Q

1), Ĉu
ij(q

u
ij), and V Cu

ij(q
u
ij) are also continu-

ously differentiable and convex. Furthermore, we assume that manufacturers compete

in a noncooperative fashion in the sense of Nash (1950, 1951). Hence, the optimal-

ity conditions for all manufacturers simultaneously (cf. Bazaraa, Sherali, and Shetty

(1993) and Nagurney (1999)) can be expressed as the following variational inequality:

determine Q1∗ ∈ Rmng
+ satisfying:

m∑
i=1

n∑
j=1

g∑
u=1

∂F̂i(Q
1∗)

∂qu
ij

+
∂Ĉu

ij(q
u∗
ij )

∂qu
ij

+ θi(
∂V Fi(Q

1∗)

∂qu∗
ij

+
∂V Cu

ij(q
u∗
ij )

∂qu∗
ij

)− ρu∗
1ij


×[qu

ij − qu∗
ij ] ≥ 0, ∀Q1 ∈ Rmng

+ . (5)

2.2 The Behavior of the Retailers

The retailers, in turn, are involved in transactions both with the manufacturers and

the demand markets since they must obtain the product to deliver to the consumers

at the demand markets.

Let ρv∗
2jk denote the price charged for the product by retailer j to demand market

k when the product is shipped via transportation mode v. Hence, retailers can price

according to their locations as well as according to the transportation modes utilized.

This price is determined endogenously in the model along with the prices associated

with the manufacturers, that is, the ρu∗
1ij, for all i, j and u. We assume that certain

disruptions will affect the retailers’ handling processes (e. g., the storage and display

processes). An additional random risk/disruption related random parameter ηj is

associated with the handling cost of retailer j. Recall that we also assume that there

are h types of transportation modes available to each retailer for shipping the product
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to the demand markets. The expected handling cost is given by:

Ĉ1
j (Q1, Q2) ≡

∫
ηj

cj(Q
1, Q2, ηj)dFj(ηj), j = 1, . . . , n. (6)

We further denote the variance of the above handling cost function as V C1
j (Q1, Q2)

where j = 1, . . . , n.

Furthermore, similar to the case for the manufacturers, we associate a nonnegative

weight $j to the variance of each retailer’s handling cost according to his attitude

towards risk. Each retailer faces two objectives: to maximize his expected profit

and to minimize the disruption risks adjusted by his risk attitude. Therefore, the

objective function for retailer j; j = 1, . . . , n can be expressed as follows:

Maximize
o∑

k=1

h∑
v=1

ρv∗
2jkq

v
jk − Ĉ1

j (Q1, Q2)−
m∑

i=1

g∑
u=1

ρu∗
1ijq

u
ij −$jV C1

j (Q1, Q2) (7)

subject to:
o∑

k=1

h∑
v=1

qv
jk ≤

m∑
i=1

g∑
u=1

qu
ij (8)

and the nonnegativity constraints: qu
ij ≥ 0 for all i, j, and u; qv

jk ≥ 0 for all j, k, and

v.

Objective function (7) expresses that the difference between the revenues minus the

expected handling cost, the payout to the manufacturers and the weighted disruption

risk is to be maximized. Constraint (8) states that retailers cannot purchase more

product from a retailer than is available in stock.

As noted in Table 1, γj is the Lagrange multiplier associated with constraint (8)

for retailer j. Furthermore, we assume that, for each retailer, the handling cost

without disruptions is continuously differentiable and convex. It is easy to verify that

Ĉ1
j (Q1, Q2) and V C1

j (Q1, Q2) are also continuously differentiable and convex. We

assume that retailers compete with one another in a noncooperative manner, seeking

to determine their optimal shipments from the manufacturers and to the demand

markets. The optimality conditions for all retailers simultaneously coincide with the

solution of the following variational inequality: determine (Q1∗, Q2∗, γ∗) ∈ Rmng+noh+n
+
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satisfying:

m∑
i=1

n∑
j=1

g∑
u=1

∂Ĉ1
j (Q1∗, Q2∗)

∂qu
ij

+ ρu∗
1ij + $j

∂V C1
j (Q1∗, Q2∗)

∂qu
ij

− γ∗
j

× [
qu
ij − qu∗

ij

]

+
n∑

j=1

o∑
k=1

h∑
v=1

−ρv∗
2jk + γ∗

j +
∂Ĉ1

j (Q1∗, Q2∗)

∂qv
jk

+ $j

∂V C1
j (Q1∗, Q2∗)

∂qv
jk

× [
qv
jk − qv∗

jk

]

+
n∑

j=1

[
m∑

i=1

g∑
u=1

qu∗
ij −

o∑
k=1

h∑
v=1

qv∗
jk

]
×

[
γj − γ∗

j

]
≥ 0, ∀(Q1, Q2, γ) ∈ Rmng+noh+n

+ . (9)

2.3 The Market Equilibrium Conditions

We now turn to a discussion of the market equilibrium conditions. Subsequently,

we construct the equilibrium condition for the entire supply chain network.

The equilibrium conditions associated with the product shipments that take place

between the retailers and the consumers are the stochastic economic equilibrium con-

ditions, which, mathematically, take on the following form: for any retailer with

associated demand market k; k = 1, . . . , o:

d̂k(ρ
∗
3)

{
≤ ∑o

j=1

∑h
v=1 qv∗

jk , if ρ∗3k = 0,
=

∑o
j=1

∑h
v=1 qv∗

jk , if ρ∗3k > 0,
(10a)

ρv∗
2jk + cv

jk(Q
2∗)

{
≥ ρ∗3k, if qv∗

jk = 0,
= ρ∗3k, if qv∗

jk > 0.
(10b)

Conditions (10a) state that, if the expected demand price at demand market

k is positive, then the quantities purchased by consumers at the demand market

from the retailers in the aggregate is equal to the demand at demand market k.

Conditions (10b) state, in turn, that in equilibrium, if the consumers at demand

market k purchase the product from retailer j via transportation mode v, then the

price charged by the retailer for the product plus the unit transaction cost is equal

to the price that the consumers are willing to pay for the product. If the price plus

the unit transaction cost exceeds the price the consumers are willing to pay at the
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demand market then there will be no transaction between the retailer and demand

market via that transportation mode.

Equilibrium conditions (10a) and (10b) are equivalent to the following variational

inequality problem, after summing over all demand markets: determine (Q2∗, ρ∗3) ∈
Rnoh+o

+ satisfying:
o∑

k=1

(
n∑

j=1

h∑
v=1

qv∗
jk − d̂k(ρ

∗
3))× [ρ3k − ρ∗3k]

+
o∑

k=1

n∑
j=1

h∑
v=1

(ρv∗
2jk + cv

jk(Q
2∗)− ρ∗3k)× [qv

jk − qv∗
jk ] ≥ 0, ∀ρ3 ∈ Ro

+, ∀Q2 ∈ Rnoh
+ , (11)

where ρ3 is the o-dimensional vector with components: ρ31, . . . , ρ3o and Q2 is the

noh-dimensional vector.

Remark: In this paper, we are interested in the cases where the expected demands

are positive, that is, d̂k(ρ3) > 0, ∀ρ3 ∈ Ro
+ for k = 1, . . . , o. Furthermore, we assume

that the unit transaction costs: cv
jk(Q

2) > 0, ∀j, k, ∀Q2 6= 0.

Under the above assumptions, we have that ρ∗3k > 0 and d̂k(ρ
∗
3) =

∑n
j=1

∑o
k=1

∑h
v=1 qv∗

jk ,

∀k. This can be shown by contradiction. If there exists a k̄ where ρ∗3k̄ = 0, then ac-

cording to (10a) we have that
∑n

j=1

∑o
k=1

∑h
v=1 qv∗

jk ≥ d̂k̄(ρ
∗
3) > 0. Hence, there exists

at least a (j,k̄) pair such that qv∗
jk̄ > 0, which means that cv

jk̄(Q
2∗) > 0 by assumption.

From conditions (10b), we have that ρv∗
2jk̄ + cv

jk̄(Q
2∗) = ρ3k̄ > 0, which leads to a

contradiction.

2.4 The Equilibrium Conditions of the Supply Chain

In equilibrium, we must have that the optimality conditions for all manufacturers,

as expressed by (4), the optimality conditions for all retailers, as expressed by (9), and

as well as the equilibrium conditions for all the demand markets, as expressed by (11),

must hold simultaneously (see also Nagurney, Cruz, Dong, and Zhang (2005)). Hence,

the product shipments of the manufacturers with the retailers must be equal to the

product shipments that retailers accept from the manufacturers. We now formally

state the equilibrium conditions for the entire supply chain network as follows:
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Definition 1: Supply Chain Network Equilibrium with Uncertainty and

Random Demands

The equilibrium state of the supply chain network with disruption risks and random

demands is one where the flows of the product between the tiers of the decision-makers

coincide and the flows and prices satisfy the sum of conditions (4), (9), and (11).

The summation of inequalities (4), (9), and (11), after algebraic simplification,

yields the following result (see also Nagurney (1999, 2006a)).

Theorem 1: Variational Inequality Formulation

A product shipment and price pattern (Q1∗, Q2∗, γ∗, ρ∗3) ∈ Rmng+noh+n+o
+ is an equi-

librium pattern of the supply chain model according to Definition 1, if and only if it

satisfies the variational inequality problem:

m∑
i=1

n∑
j=1

g∑
u=1

[
∂F̂i(Q

1∗)

∂qu
ij

+
∂Ĉu

ij(q
u∗
ij )

∂qu
ij

+ θi(
∂V Fi(Q

1∗)

∂qu
ij

+
∂V Cu

ij(q
u∗
ij )

∂qu
ij

)

+
∂Ĉ1

j (Q1∗, Q2∗)

∂qu
ij

+ $j

∂V C1
j (Q1∗, Q2∗)

∂qu
ij

− γ∗
j ]× [qu

ij − qu∗
ij ]

+
n∑

j=1

o∑
k=1

g∑
v=1

[
∂Ĉ1

j (Q1∗, Q2∗)

∂qv
jk

+ $j

∂V C1
j (Q1∗, Q2∗)

∂qv
jk

+γ∗
j + cv

jk(Q
2∗)− ρ∗3k]×

[
qv
jk − qv∗

jk

]
+

n∑
j=1

[
m∑

i=1

g∑
u=1

qu∗
ij −

o∑
k=1

h∑
v=1

qv∗
jk

]
×

[
γj − γ∗

j

]
+

o∑
k=1

(
n∑

j=1

h∑
v=1

qv∗
jk − d̂k(ρ

∗
3))× [ρ3k − ρ∗3k] ≥ 0,

∀(Q1, Q2, γ, ρ3) ∈ Rmng+noh+n+o
+ . (12)

For easy reference in the subsequent sections, variational inequality problem (12)

can be rewritten in standard variational inequality form (cf. Nagurney (1999)) as

follows: determine X∗ ∈ K:

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K ≡ Rmng+noh+n+o
+ , (13)
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where X ≡ (Q1, Q2, γ, ρ3), F (X) ≡ (Fiju, Fjkv, Fj, Fk)i=1,···,m;j=1,···,n;k=1,···,o;u=1,···,g;v=1,···,h,

and the specific components of F are given by the functional terms preceding the mul-

tiplication signs in (12). The term < ·, · > denotes the inner product in N -dimensional

Euclidean space.

Note that the equilibrium values of the variables in the model (which can be

determined from the solution of either variational inequality (12) or (13)) are: the

equilibrium product shipments between manufacturers and the retailers given by Q1∗,

and the equilibrium product shipments transacted between the retailers and the de-

mand markets given by Q2∗, as well as the equilibrium prices: ρ∗3 and γ∗. We now

discuss how to recover the prices ρ∗1 associated with the top tier of nodes of the supply

chain network and the prices ρ∗2 associated with the middle tier.

First, note that, from (5), we have that if qu∗
ij > 0, then price ρu∗

1ij = ∂F̂i(Q
1∗)

∂qu
ij

+

∂Ĉu
ij(q

u∗
ij )

∂qu
ij

+ θi(
∂V Fi(Q

1∗)
∂qu∗

ij
+

∂V Cu
ij(q

u∗
ij )

∂qu∗
ij

). One the other hand, from (9), it follows that, if

qv∗
jk > 0, the price ρ∗2j = γ∗

j +
∂Ĉ1

j (Q1∗,Q2∗)

∂qv
jk

+ $j
∂V C1

j (Q1∗,Q2∗)

∂qv
jk

. These expressions can be

utilized to obtain all such prices for all modes and decision-makers.
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3. A Weighted Supply Chain Performance Measure

In this Section, we first propose a supply chain network performance measure.

Then, we provide the definition of supply chain network robustness, and follow with

the definition for a weighted supply chain performance measure.

3.1 A Supply Chain Network Performance Measure

Recently, Qiang and Nagurney (2008) (see also Nagurney and Qiang (2007a, b, c))

proposed a network performance measure, which captures flows, costs, and behavior

under network equilibrium conditions. Based on the measure in the above paper(s),

we propose the following definition of a supply chain network performance measure.

Definition 2: The Supply Chain Network Performance Measure

The supply chain network performance measure, E, for a given supply chain, and

expected demands: d̂k; k = 1, 2, . . . , o, is defined as follows:

E ≡
∑o

k=1
d̂k

ρ3k

o
, (14)

where o is the number of demand markets in the supply chain network, and d̂k and

ρ3k denote, respectively, the expected equilibrium demand and the equilibrium price at

demand market k.

Note that the equilibrium price is equal to the unit production and transaction

costs plus the weighted marginal risks for producing and transacting one unit from

the manufacturers to the demand markets (see also Nagurney (2006b)). According

to the above performance measure, a supply chain network performs well in network

equilibrium if, on the average, and across all demand markets, a large demand can

be satisfied at a low price. Therefore, in this paper, we apply the above performance

measure to assess the robustness of particular supply chain networks. From the

discussion in Section 2.3, we have that ρ3k > 0, ∀k. Therefore, the above definition

is well-defined.

Furthermore, since each individual may have different opinions as to the risks, we

need a “basis” to compare supply chain performance under different risk attitudes and
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to understand how risk attitudes affect the performance of a supply chain. Hence,

we define E0 as the supply chain performance measure where the d̂k and the ρ3k;

k = 1, . . . , o, are obtained by assuming that the weights that reflect the manufacturers

and the retailers’ attitudes towards the disruption risks are zero. This definition

excludes individuals’ subjective differences in a supply chain and, with this definition,

we are ready to study supply chain network robustness.

3.2 Supply Chain Robustness Measurement

Robustness has a broad meaning and is often couched in different settings. Gener-

ally speaking, robustness means that the system performs well when exposed to un-

certain future conditions and perturbations (cf. Bundschuh, Klabjan, and Thurston

(2003), Snyder (2003), and Holmgren (2007)).

Therefore, we propose the following rationale to assess the robustness of a supply

chain: assume that all the random parameters take on a given threshold probability

value; say, for example, 95%. Moreover, assume that all the cumulative distribution

functions for random parameters have inverse functions. Hence, we have that: αi =

F−1
i (.95), for i = 1, . . . ,m; βu

ij = Fu−1

ij (.95), for i = 1, . . . ,m; j = 1, . . . , n, and so

on. With the disruption related parameters given, we can calculate the supply chain

performance measure according to the definition given by (14). Let Ew denote the

supply chain performance measure with random parameters fixed at a certain level

as described above. For example, when w = 0.95, Ew is the supply chain performance

with all the random risk parameters fixed at the value of a 95% probability level.

Then, the supply chain network robustness measure, R, is given by the following:

R = E0 − Ew, (15)

where E0 gauges the supply chain performance based on the model introduced in

Section 2, but with weights related to risks being zero.

E0 examines the “base” supply chain performance while Ew assesses the supply

chain performance measure at some prespecified uncertainty level. If their difference

is small, a supply chain maintains its functionality well and we consider the supply
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chain to be robust at the threshold disruption level. Hence, the lower the value of R,

the more robust a supply chain is.

Notably, the above robustness definition has implications for network resilience as

well. Resilience is a general and conceptual term, which is hard to quantify. McCarthy

(2007) defined resilience “... as the ability of a system to recover from adversity, ei-

ther back to its original state or an adjusted state based on new requirements, ...”.

For a comprehensive discussion of resilience, please refer to the Critical Infrastruc-

ture Protection Program (2007). Because our supply chain measure is based on the

network equilibrium model, a network that is qualified as being robust according to

our measure is also resilient provided that its performance after experiencing the dis-

ruption(s) is close to the “original value.” Interestingly, this idea is in agreement with

Hansson and Helgesson (2003), who proposed that robustness can be treated as a

special case of resilience.

3.3 A Weighted Supply Chain Performance Measure

Note that different supply chains may have different requirements regarding the

performance and robustness concepts introduced in the previous sections. For ex-

ample, in the case of a supply chain of a toy product one may focus on how to

satisfy demand in the most cost efficient way and not care too much about sup-

ply chain robustness. A medical/healthcare supply chain, on the other hand, may

have a requirement that the supply chain be highly robust when faced with uncer-

tain conditions. Hence, in order to be able to examine and to evaluate the different

application-based supply chains from both perspectives, we now define a weighted

supply chain performance measure as follows:

Ê = (1− ε)E0 + ε(−R), (16)

where ε ∈ [0, 1] is the weight that is placed on the supply chain robustness.

When ε is equal to 1, the performance of a supply chain hinges only on the robust-

ness measure, which may be the case for a medical/healthcare supply chain, noted

above. In contrast, when ε is equal to 0, the performance of the supply chain depends
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solely on how well it can satisfy demands at low prices. The supply chain of a toy

product in the above discussion falls into this category.

4. Examples

The supply chain network topology for the numerical examples is depicted in

Figure 2 below. There are assumed to be two manufacturers, two retailers, and two

demand markets. There are two modes of transportation available between each

manufacturer and retailer pair and between each retailer and demand market pair.

These examples are solved by the modified projection method of Korpelevich (1977);

see also, e.g., Nagurney (2006a).
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Figure 2: The Supply Chain Network for the Numerical Examples

Example 1

In the first example, for illustration purposes, we assumed that all the random pa-

rameters followed uniform distributions. The relevant parameters are as follows:
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αi ∼ [0, 2] for i = 1, 2; βu
ij ∼ [0, 1] for i = 1, 2; j = 1, 2; u = 1, 2; ηj ∼ [0, 3] for

j = 1, 2.

We further assumed that the demand functions followed a uniform distribution

given by [200− 2ρ3k, 600− 2ρ3k], for k = 1, 2. Hence, the expected demand functions

are:

d̂k(ρ3) = 400− 2ρ3k, for k = 1, 2.

The production cost functions for the manufacturers are given by:

f1(Q
1, α1) = 2.5(

2∑
j=1

2∑
u=1

qu
1j)

2 + (
2∑

j=1

2∑
u=1

qu
1j)(

2∑
j=1

2∑
u=1

qu
2j) + 2α1(

2∑
j=1

2∑
u=1

qu
1j),

f2(Q
1, α2) = 2.5(

2∑
j=1

2∑
u=1

qu
2j)

2 + (
2∑

j=1

2∑
u=1

qu
1j)(

2∑
j=1

2∑
u=1

qu
2j) + 2α2(

2∑
j=1

2∑
u=1

qu
2j).

The expected production cost functions for the manufacturers are given by:

F̂1(Q
1) = 2.5(

2∑
j=1

2∑
u=1

qu
1j)

2 + (
2∑

j=1

2∑
u=1

qu
1j)(

2∑
j=1

2∑
u=1

qu
2j) + 2(

2∑
j=1

2∑
u=1

qu
1j),

F̂2(Q
1) = 2.5(

2∑
j=1

2∑
u=1

qu
2j)

2 + (
2∑

j=1

2∑
u=1

qu
1j)(

2∑
j=1

2∑
u=1

qu
2j) + 2(

2∑
j=1

2∑
u=1

qu
2j).

The variances of the production cost functions for the manufacturers are given by:

V F1(Q
1) =

4

3
(

2∑
j=1

2∑
u=1

qu
1j)

2,

V F2(Q
1) =

4

3
(

2∑
j=1

2∑
u=1

qu
2j)

2.

The transaction cost functions faced by the manufacturers and associated with

transacting with the retailers are given by:

c1
ij(q

1
ij, β

1
ij) = .5(q1

ij)
2 + 3.5β1

ijq
1
ij, for i = 1, 2; j = 1, 2,

c2
ij(q

2
ij, β

2
ij) = (q2

ij)
2 + 5.5β2

ijq
2
ij, for i = 1, 2; j = 1, 2.
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The expected transaction cost functions faced by the manufacturers and associated

with transacting with the retailers are given by:

Ĉ1
ij(q

1
ij) = .5(q1

ij)
2 + 1.75q1

ij, for i = 1, 2; j = 1, 2,

Ĉ2
ij(q

2
ij) = .5(q2

ij)
2 + 2.75q2

ij, for i = 1, 2; j = 1, 2.

The variances of the transaction cost functions faced by the manufacturers and

associated with transacting with the retailers are given by:

V C1
ij(q

1
ij) = 1.0208(q1

ij)
2, for i = 1, 2; j = 1, 2,

V C2
ij(q

2
ij) = 2.5208(q2

ij)
2, for i = 1, 2; j = 1, 2.

The handling costs of the retailers, in turn, are given by:

cj(Q
1, Q2, ηj) = .5(

2∑
i=1

2∑
u=1

qu
ij)

2 + ηj(
2∑

i=1

2∑
u=1

qu
ij), for j = 1, 2.

The expected handling costs of the retailers are given by:

Ĉ1
j (Q1, Q2) = .5(

2∑
i=1

2∑
u=1

qu
ij)

2 + 1.5(
2∑

i=1

2∑
u=1

qu
ij), for j = 1, 2.

The variance of the handling costs of the retailers are given by:

V Cj(Q
1, Q2) =

3

4
(

2∑
i=1

2∑
u=1

qu
ij)

2, for j = 1, 2.

The unit transaction costs from the retailers to the demand markets are given by:

c1
jk(Q

2) = .3q1
jk, for j = 1, 2; k = 1, 2,

c2
jk(Q

2) = .6q2
jk, for j = 1, 2; k = 1, 2.

We assumed that the manufacturers and the retailers placed zero weights on the

disruption risks as discussed in Section 3.1 to compute E0.
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In the equilibrium, under the expected costs and demands, we have that the

equilibrium shipments between manufacturers and retailers are: q1∗
ij = 8.5022, for i =

1, 2; j = 1, 2; q2∗
ij = 3.7511, for i = 1, 2; j = 1, 2; whereas the equilibrium shipments

between the retailers and the demand markets are: q1∗
jk = 8.1767, for j = 1, 2; k =

1, 2; q2∗
jk = 4.0767, for j = 1, 2; k = 1, 2. Finally, the equilibrium prices are: ρ∗31 =

ρ∗32 = 187.7466 and the expected equilibrium demands are: d̂1 = d̂2 = 24.5068.

The supply chain performance measure is equal to E0 = 0.1305. Now, assume that

w = .95; that is, all the random cost parameters are fixed at a 95% probability level.

The resulting supply chain performance measure is computed as Ew=0.1270. If we

let ε = .5 (cf. (16)), which means that we place equal emphasis on performance and

robustness of the supply chain, the weighted supply chain performance measure is

Ê = 0.0635.

Example 2

For the same network structure and cost and demand functions, we now assume that

the relevant parameters are changed as follows: αi ∼ [0, 4] for i = 1, 2; βu
ij ∼ [0, 2] for

i = 1, 2; j = 1, 2; u = 1, 2; ηj ∼ [0, 6] for j = 1, 2.

In the equilibrium, under the expected costs and demands, we have that the equi-

librium shipments between manufacturers and retailers are now: q1∗
ij = 8.6008, for i =

1, 2; j = 1, 2; q2∗
ij = 3.3004, for i = 1, 2; j = 1, 2; whereas the equilibrium ship-

ments between the retailers and the demand markets are: q1∗
jk = 7.9385, for j =

1, 2; k = 1, 2; q2∗
jk = 3.9652, for j = 1, 2; k = 1, 2. Finally, the equilibrium prices are:

ρ∗31 = ρ∗32 = 188.0963 and the expected equilibrium demands are: d̂1 = d̂2 = 23.8074.

The supply chain performance measure is equal to E0 = 0.1266. Similar to the above

example, let us assume that w = .95; that is, all the random cost parameters are

fixed at a 95% probability level. The resulting supply chain performance measure is

now: Ew=0.1194. If we let ε = .5, the weighted supply chain performance measure is

Ê = 0.0597.

Observe that first example leads to a better measure of performance since the

uncertain parameters do not have as great of an impact as in the second one for the
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cost functions under the given threshold level.

5. Summary and Conclusions

In this paper, we developed a novel supply chain network model to study the

demand-side as well as the supply-side risks, with the demand being random and the

supply-side risks modeled as uncertain parameters in the underlying cost functions.

This supply chain model generalizes several existing models by including multiple

transportation modes from the manufacturers to the retailers, and from the retailers

to the demand markets. We also proposed a weighted supply chain performance and

robustness measure based on our recently derived network performance/efficiency

measure and illustrated the supply chain network model through numerical exam-

ples for which the equilibrium prices and product shipments were computed and

robustness analyses conducted. For future research, we plan on constructing further

comprehensive metrics in order to evaluate supply chain network performance and

to also apply the results in this paper to empirically-based supply chain networks in

different industries.
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