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1. Introduction

Recently, the study of networks, and especially complex networks, has drawn a

great deal of interest among researchers from different disciplines; see, for example,

Barabási and Albert [1], Newman [23], Boginski, Butenko, and Pardalos [3], and

O’Kelly, Kim, and Kim [24]. Three types of networks, in particular, have received

intense attention, especially in regards to the study of reliability and we note the

Erdös-Rényi [10] random network model, the Watts-Strogatz [28] small-world model,

and the Barabási-Albert [1] scale-free networks.

The importance of studying and identifying the vulnerable components of a net-

work has been linked to events such as 9/11 and to Hurricane Katrina, as well as

the biggest blackout in North America that occurred on August 14, 2003. In order

to hedge against terrorism and natural disasters (cf. Sheffi [25]), a majority of the

associated complex network (sometimes also referred to as network science) literature

focuses on the graph characteristics (e.g. connectivity between nodes) of the asso-

ciated application in order to evaluate the network vulnerability; see, for example,

Chassin and Posse [5].

However, in order to be able to evaluate the vulnerability and the reliability of

a network, a measure that can quantifiably capture the efficiency/performance of a

network must be developed. For example, in a series of papers, Latora and Marchiori

[12]-[14] discussed the network performance issue by measuring the “global efficiency”

in a weighted network as compared to that of the simple non-weighted small-world

network. In a weighted network, the network is not only characterized by the edges

that connect different nodes, but also by the weights associated with different edges

in order to capture the relationships between different nodes. The network efficiency

E(G) of a network G is defined by Latora and Marchiori [12]-[14] as E = E(G) =
1

n(n−1)

∑
i 6=j∈G

1
dij

, where n is the number of nodes in G and dij is the shortest path

length (the geodesic distance) between nodes i and j. For simplicity, in this paper,

we refer to the above Latora and Marchiori measure as the L-M measure.

We believe that the flow on a network is an additional important indicator of

network performance as well as network vulnerability. Indeed, flows represent the
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usage of a network and which paths and links have positive flows and the magnitude

of these flows are relevant in the case of network disruptions. However, to the best

of our knowledge, there are very few papers to-date that consider network flows in

assessing network performance. The results in Zhu et al. [30] are notable since

they demonstrate empirically through an application to the airline network of China

how a measure with flows and costs outperforms existing measures in yielding more

realistic results in terms of, for example, which cities are critical and their rankings

in the network. Nevertheless, as we demonstrate in Section 3, their measure is only

applicable to networks with fixed demands. It is well-known that in many network

applications, consumers may be sensitive to prices/costs and, therefore, the demand

will no longer be fixed, but will, rather, be elastic, that is, price-dependent. Therefore,

a unified network performance measure that is consistent across fixed demand as well

as elastic demand networks is needed. Moreover, in the case of a disaster, users of

the network may be sensitive to the increased associated costs of using the network

and the demand may, as a consequence, change.

We note that, recently, Jenelius, Petersen, and Mattsson [11] proposed several

link importance indicators and applied them to the road transportation network in

northern Sweden. Their indicators, however, are distinct, depending upon whether

or not the network becomes disconnected or not. Murray-Tuite and Mahmassani

[16] also focused on identifying indices for the determination of vulnerable links in

transportation networks but our measure is unified and can be applied to assess the

importance of either links or nodes or both and is applicable to both fixed demand

and to elastic demand network equilibrium problems.

In this paper, we propose a network performance measure that can be used to eval-

uate the efficiency of different networks in the case of either fixed or elastic demands.

The formal network performance/efficiency measure is presented in the context of

network equilibrium, which captures prices and costs and the underlying behavior of

“users” of the network.

The paper is organized as follows. In Section 2, an elastic demand network model

and a fixed demand network model, which is a special case of the latter, are recalled.
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In Section 3, the network performance measure is introduced, and its relationships

to several existing measures identified. In Section 4, the new measure is applied to

three network examples. The paper concludes with a summary and future research

directions in Section 5.

2. The Network Equilibrium Models with Elastic and Fixed Demands

In this Section, we recall the network equilibrium model with elastic demands with

given inverse demand or disutility functions (see Dafermos [7]). We then provide a

special case in which the demands are assumed fixed and known. These models were

originally proposed in the context of transportation but, given their wide applicability,

the presentation below is for any network equilibrium problem. Indeed, Nagurney

[19], Liu and Nagurney [15], and Wu et al. [29] have shown, respectively, that supply

chain networks, financial networks, and electric power generation and distribution

networks can be reformulated and solved as transportation network problems over

appropriately constructed abstract networks or supernetworks (Nagurney and Dong

[20]). Moreover, it has been realized (cf. Nagurney, Parkes, and Daniele [21] and

the references therein) that the Internet also exhibits behavior similar to that of

transportation network equilibrium problems, including the occurrence of the Braess

[4] paradox.

2.1 Network Equilibrium Model with Elastic Demands

We consider a network G with the set of directed links L with K elements, the set

of origin/destination (O/D) pairs W with nW elements, and the set of acyclic paths

joining the O/D pairs by P with nP elements.

We denote the set of paths joining O/D pair w by Pw. Links are denoted by a, b,

etc; paths by p, q, etc., and O/D pairs by w1, w2, etc.

We denote the nonnegative flow on path p by xp and the flow on link a by fa

and we group the path flows into the vector x ∈ RnP
+ and the link flows into the

vector f ∈ RK
+ . The link flows are related to the path flows through the following
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conservation of flow equations:

fa =
∑

p∈P

xpδap, ∀a ∈ L, (1)

where δap = 1 if link a is contained in path p, and δap = 0, otherwise. Hence, the flow

on a link is equal to the sum of the flows on paths that contain that link.

The user cost on a path p is denoted by Cp and the user cost on a link a by ca.

We denote the demand associated with using O/D pair w by dw and the disutility by

λw.

The user costs on paths are related to user costs on links through the following

equations:

Cp =
∑

a∈L

caδap, ∀p ∈ P, (2)

that is, the user cost on a path is equal to the sum of user costs on links that make

up the path.

For the sake of generality, we allow the user link cost function on each link to

depend upon the entire vector of link flows, so that

ca = ca(f), ∀a ∈ L. (3)

We also assume that the link cost functions are continuous.

The following conservation of flow equations must also hold:

∑

p∈Pw

xp = dw, ∀w ∈ W, (4)

which means that the sum of path flows on paths connecting each O/D pair must be

equal to the demand for that O/D pair.

Also, we assume, as given, the disutility (that is, the inverse demand) functions

for the O/D pairs, which are assumed to be continuous, such that

λw = λw(d), ∀w ∈ W, (5)

where d is the vector of demands.
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Definition 1: Network Equilibrium – Elastic Demands

A path flow and demand pattern (x∗, d∗) ∈ K1, where K1 ≡ {(x, d)|(x, d) ∈ RnP +nW
+

and (4) holds}, is said to be a network equilibrium, in the case of elastic demands, if,

once established, no user has any incentive to alter his “travel” decisions. The state

is expressed by the following condition which must hold for each O/D pair w ∈ W

and every path p ∈ Pw:

Cp(x
∗)

{
= λw(d∗), if x∗

p > 0,
≥ λw(d∗), if x∗

p = 0.
(6)

Condition (6) states that all utilized paths connecting an O/D pair have equal and

minimal user costs and these costs are equal to the disutility associated with using

that O/D pair. As established in Dafermos [7], the network equilibrium condition (6)

is equivalent to the following variational inequality problem.

Theorem 1

A path flow and demand pattern (x∗, d∗) ∈ K1 is an equilibrium according to Definition

1 if and only if it satisfies the variational inequality: determine (x∗, d∗) ∈ K1 such

that

∑

w∈W

∑

p∈Pw

Cp(x
∗) ×

[
xp − x∗

p

]
−

∑

w∈W

λw(d∗) × [dw − d∗
w] ≥ 0, ∀(x, d) ∈ K1. (7)

2.2 Network Equilibrium Model with Fixed Demands

Assume now that the demands are fixed and known. We then have that Definition

1 simplifies to:

Definition 2: Network Equilibrium – Fixed Demands

A path flow pattern x∗ ∈ K2, where K2 ≡ {x|x ∈ RnP
+ and (4) holds with dw known

and fixed for each w ∈ W}, is said to be a network equilibrium, in the case of fixed
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demands, if the following condition holds for each O/D pair w ∈ W and each path

p ∈ Pw:

Cp(x
∗)

{
= λw, if x∗

p > 0,
≥ λw, if x∗

p = 0.
(8)

The interpretation of condition (8) is that all used paths connecting an O/D pair

have equal and minimal costs (see also Wardrop [27] and Beckmann, McGuire, and

Winsten [2]). As proved in Smith [26] and Dafermos [6], the fixed demand network

equilibrium condition (8) is equivalent to the following variational inequality problem.

Theorem 2

A path flow pattern x∗ ∈ K2 is a network equilibrium according to Definition 2 if and

only if it satisfies the variational inequality problem: determine x∗ ∈ K2 such that

∑

w∈W

∑

p∈Pw

Cp(x
∗) ×

[
xp − x∗

p

]
≥ 0, ∀x ∈ K2. (9)

Clearly, (9) can be obtained directly from (7) by noting that d∗
w = dw, with the

dw’s being fixed and known a priori for all w ∈ W .

Existence of a solution to variational inequality (9) is guaranteed from the stan-

dard theory of variational inequalities (see e.g. Nagurney [18]) under the assumption

that the link cost functions and, hence, the path cost functions are continuous since

the feasible set K2 is compact. Uniqueness of an equilibrium link flow pattern, in

turn, is then guaranteed under the assumption that the user link cost functions are

strictly monotone. In the case of variational inequality (7) stronger conditions need

to be imposed to obtain existence of a solution. We note that, in particular, strong

monotonicity of the link cost functions and minus the disutility functions will guar-

antee uniqueness of the corresponding equilibrium link flow and demand pattern (see

also Nagurney [18]). Algorithms for the solution of variational inequalities (7) and (9)

can be found in Nagurney [18], Nagurney and Zhang [22], and the references therein.
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Thus, an appropriate and unified network performance/efficiency measure should

be as appropriate for the case of elastic demands as it is for fixed demands.

3. A Unified Network Performance Measure

Before we introduce a unified network performance measure we first state an im-

portant property that such a measure should have.

Network Performance Property:

The performance/efficiency measure for a given network should be nonincreasing with

respect to the equilibrium disutility for each O/D pair, holding the equilibrium disu-

tilities for the other O/D pairs constant.

Given this desirable property of a network performance measure, we propose a

new, unified network performance measure as follows:

Definition 3: A Unified Network Performance Measure

The network performance/efficiency measure, E(G, d), for a given network topology

G and the equilibrium (or fixed) demand vector d, is defined as follows:

E = E(G, d) =

∑
w∈W

dw

λw

nW

, (10)

where recall that nW is the number of O/D pairs in the network, and dw and λw

denote, for simplicity, the equilibrium (or fixed) demand and the equilibrium disutility

for O/D pair w, respectively.

Interestingly, we demonstrate in the following theorem that, under certain assump-

tions, our measure collapses to the L-M measure, which, however, considers neither

explicit demands nor flows!

Theorem 3

If positive demands exist for all pairs of nodes in the network G, and each of these

demands is equal to 1 and if dij is set equal to λw, where w = (i, j), for all w ∈ W
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then the proposed network efficiency measure (10) and the L-M measure are one and

the same.

Proof: Let n be the number of nodes in G. Hence, the total number of O/D pairs,

nW , is equal to n(n − 1) given the assumption that there exist positive demands for

all pairs of nodes in G. Furthermore, by assumption, we have that dw = 1, ∀w ∈ W ,

w = (i, j), and dij = λw, where i 6= j, ∀i, j ∈ G. Then the L-M measure becomes as

follows:

E = E(G) =
1

n(n − 1)

∑

i 6=j∈G

1

dij

=

∑
i 6=j∈G

1
dij

nW

=

∑
w∈W

dw

λw

nW

= E(G, d) = E . (11)

The conclusion, thus, follows. 2

Note that, from the definition, λw is the equilibrium disutility or “shortest path”

for O/D pair w and dij is the shortest path length (the geodesic distance) between

nodes i and j. Therefore, the assumption of dij being equal to λw is reasonable. Our

measure, however, is a more general measure since it also captures the flows on the

network through the disutilities, costs, and the demands.

Furthermore, we note that in the L-M measure, there is no information regarding

the demand for each O/D pair. Therefore, n(n − 1) can be interpreted as the total

possible number of O/D pairs regardless of whether there exists a demand for a pair

of nodes or not. However, because our measure is an average network efficiency

measure, it does not make sense to count a pair of nodes which has no associated

demand in the computation of the network efficiency. Therefore, the number of O/D

pairs, nW , is more appropriate as a divisor in our measure than n(n−1). Of course, if

there is a positive associated demand between all pairs of nodes in the network then

nW = n(n − 1).

Zhu et al. [30] introduced another measure, which we denote by Ê(G), which they

then applied to gauge the efficiency of the Chinese airline transportation network with

fixed demands. Their network performance measure is characterized by the average

social travel cost, which is represented below (with their notation adapted to ours,
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for clarity):

Ê(G) =

∑
w∈W λwdw∑

w∈W dw

. (12)

The Zhu et al. [30] measure is an average disutility weighted by the demands. It

can be used for networks with fixed demands, provided that the network does not get

disconnected, in which case the measure becomes undefined. Indeed, a very important

feature of our measure is that there is no assumption made that the network needs to

be connected. In contrast, the Zhu et al. [30] measure requires such an assumption

because, otherwise, their network performance measure will become infinity. In our

measure, the elimination of a link is treated by removing that link from the network

while the removal of a node is managed by removing the links entering or exiting that

node. In the case that the removal results in no path connecting an O/D pair, we

simply assign the demand for that O/D pair (either fixed or elastic) to an abstract

path with a cost of infinity.

For a network with fixed demands, it is easy to verify that the above approach

makes our measure well-defined. Now, let’s check if our measure works for a network

with elastic demands. In a network with elastic demands, when there is a disconnected

O/D pair w, we have, from the above discussion, that the associated “path cost” of the

abstract path, say, r, Cr(x
∗), is equal to infinity. If the disutility functions are known

as discussed in Section 2.1, according to equilibrium condition (6), we then have that

Cr(x
∗) > λw(d∗), and, hence, x∗

r = 0, so that d∗
w = 0, which leads to the conclusion

of d∗
w/λw = 0. Therefore, the disconnected O/D pair w makes zero “contribution” to

the efficiency measure and our measure is well-defined in both the fixed and elastic

demand cases. The above procedure(s) to handle disconnected O/D pairs, will be

illustrated in the examples in Section 4, when we compute the importance of the

network components and their rankings.

We believe that this feature of the unified performance measure is important. In

reality, it is relevant to investigate the efficiency of a large-scale network even in the

case of disconnected O/D pairs. A measure with such adaptability and flexibility can

enable the study of the performance of a wider range of networks, especially when

evaluating networks under disruptions. Moreover, it also allows us to investigate the
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criticality of various network components without worrying about the connectivity

assumption. Notably, Latora and Marchiori [12] also mentioned this important char-

acteristic which gives their measure an attractive property over the measure used for

the small-world model.

Furthermore, as will be shown in the analysis in Section 3.1, the Zhu et al. [30]

measure cannot capture network performance/efficiency in the case of elastic de-

mands.

3.1 A Property of an Earlier Network Performance Measure

A network, be it a transportation network, or a supply chain network, or an eco-

nomic/financial network, is characterized by its topology, its demand, and associated

costs. In order to evaluate the importance of nodes and links of a network, the exam-

ination of only the topology of the network is insufficient. We also need to evaluate

the flows and the induced costs in the network.

A reasonable measure should capture the efficiency deterioration with the increase

of path costs in a network. Let’s first examine if the measure in (12) has such a

feature, even in the simplest separable case in which λw is a function only of dw for

all w ∈ W .

Assume that the disutility functions are known as described in Section 2.1. Let’s

take the partial derivative of Ê(G) in (12) with respect to λw for a network with

elastic demands with the equilibrium disutilities for all the other O/D pairs being

held constant, which yields the following:

∂Ê(G)

∂λw
=

dw · (∑w∈W dw) − (
∑

w∈W λw(dw)dw) · (λ′
w(dw))−1

(
∑

w∈W dw)2
+

λw(dw) · (λ′
w(dw))−1

∑
w∈W dw

.

(13)

It is reasonable to assume that λw(dw) ≥ 0, dw ≥ 0, and λ
′
w(dw) < 0, ∀w ∈ W .

Obviously, the first term in (13) is nonnegative and the second term is nonpositive.

Therefore, the sign of ∂Ê(G)
∂λw

depends on the equilibrium demand and the disutility

function for each w, which leads to the conclusion that the measure presented in (12)

is not appropriate for elastic demand networks.
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Now let’s check if the new measure given by (10) has the desired network perfor-

mance property specified earlier. Let’s assume that the disutility functions are known

as introduced in Section 2.1. The disutility function for each w ∈ W is assumed to

depend, for the sake of generality, on the entire demand vector. With the assumption

of the equilibrium disutilities for all the other O/D pairs being held constant, the

partial derivative of E(G, d) in (10) with regard to λw for the network with elastic

demands is then given as follows:

∂E(G, d)

∂λw

=

−dw

(λw(d))2
+

∑
v∈W

(
∂λw(d)

∂dv
)−1

λv(d)

nW

. (14)

Given the assumption that dw ≥ 0, λw ≥ 0, and ∂λw

∂dv
< 0, ∀v ∈ W , it is obvious

that E(G, d) in (14) is a nonincreasing function of λw, ∀w ∈ W .

Let’s now interpret the new proposed measure given by (10) in terms of trans-

portation networks. The equilibrium O/D pair disutility, λw, is proportional to the

(travel) time between each O/D pair w. dw is the equilibrium demand (in terms of to-

tal vehicles) between each O/D pair w. Therefore, dw/λw is the (vehicle) throughput

between O/D pair w. E(G, d) is the average (vehicle) throughput on the network G

with demand vector d. Here, instead of using the average social travel disutility/cost

as in (12) to quantify the performance of the network, an average throughput measure

is proposed. The higher the throughput that a network has, the better its perfor-

mance and the more efficient it is. For general networks, the performance/efficiency

measure E defined in (10) is actually the average demand to price ratio. When G and

d are fixed, a network is more efficient if it can satisfy a higher demand at a lower

price!

3.2 The Importance of Network Components

With our network performance/efficiency measure, we are ready to investigate the

importance of network components by studying their impact on the network efficiency

through their removal. The network efficiency can be expected to deteriorate when

a critical network component is eliminated from the network. Such a component can

include a link or a node or a subset of nodes and links depending on the network
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problem under study. Furthermore, the removal of a critical network component will

cause more severe damage than that of a trivial one. Hence, similar to the definition

of importance of network components in the paper of Latora and Marchiori [14], we

define the importance of a network component as follows:

Definition 4: Importance of a Network Component

The importance of a network component g ∈ G, I(g), is measured by the relative

network efficiency drop after g is removed from the network:

I(g) =
4E
E =

E(G, d) − E(G − g, d)

E(G, d)
(15)

where G− g is the resulting network after component g is removed from network G.

The upper bound of the importance of a network component is 1. The higher the

value, the more important a network component is.

4. Numerical Examples

In this section, three examples of networks are presented for which the unified net-

work performance/efficiency measure is computed. The first two examples, reported

in Section 4.1, are fixed demand examples, whereas the third example, given in Sec-

tion 4.2, is an elastic demand example. Moreover, the importance of individual nodes

and links are determined, ranked, and compared by using our measure, the L-M mea-

sure, and the Zhu et al. [30] measure for Example 1. In addition, for completeness,

the importance of individual nodes and links are determined and their rankings are

reported by using our measure and the L-M measure for Example 3. In the following

examples, we assume that dij in the L-M measure is equal to λw where w = (i, j) for

w ∈ W . (Note that if a pair of nodes i, j becomes disconnected, then according to

the L-M measure, dij = ∞ and, hence, 1
dij

= 0, in this case.) Example 2 is a larger

example for which we compute the importance values and the importance rankings

of the links.
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4.1 Fixed Demand Examples

We now present two fixed demand network examples.

Example 1: A Network with Fixed Demands

Example 1 is a fixed demand network problem as described in Section 2.2 and with

the topology given in Figure 1.

n1
n0

n2
n3 n4

�
��	

@
@

@R

? ?

HHHHHHHHj

���������

a b

c f
d e

Figure 1: Network for Examples 1 and 3

There are two O/D pairs in the above network given by w1 = (0, 3) and w2 = (0, 4).

There are two paths connecting each O/D pair:

for O/D pair w1:

p1 = (a, c), p2 = (b, e),

for O/D pair w2:

p3 = (a, d), p4 = (b, f).

The link cost functions are as follows:

ca(fa) = fa, cb(fb) = fb, cc(fc) = fc, cd(fd) = fd, ce(fe) = fe, cf (ff) = ff .

The demands for the O/D pairs w1 and w2 are: dw1 = 100 and dw2 = 20. The

equilibrium solution (cf. (8)) for this network is:

x∗
p1

= 50, x∗
p2

= 50, x∗
p3

= 10, x∗
p4

= 10,

λw1 = 110, λw2 = 70.
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Our network performance/efficiency measure for Example 1 is then given by:

E(G, d) =
1

nW

[
dw1

λw1

+
dw2

λw2

]
=

100
110

+ 20
70

2
= 0.5974.

The L-M measure for Example 1 is:

E(G) =
1

n(n − 1)

[
1

d01
+

1

d02
+

1

d03
+

1

d04
+

1

d13
+

1

d14
+

1

d23
+

1

d24

]

=
1

20

[
1

60
+

1

60
+

1

110
+

1

70
+

1

50
+

1

10
+

1

50
+

1

10

]
= 0.0148.

The Zhu et al. (2006) measure, in turn, is:

Ê(G) =
(dw1λw1 + dw2λw2)

(dw1 + dw2)
=

(100 × 110 + 20 × 70)

(20 + 100)
= 103.33.

The importance of links and nodes and their ranking are reported, respectively, in

Tables 1 and 2; see also Latora and Marchiori [14] and Zhu et al. [30]. Note that the

importance of network components according to Zhu et al. [30] is similar to that in

(15) but with Ê(G) substituted for E(G, d), Ê(G−g) for E(G−g, d) and the deduction

order being changed, whereas Latora and Marchiori [14] define the importance of a

network component as: I(g) = E(G) − E(G − g) = ∆E but they use I(g) = ∆E
E

in

their calculations and we do, as well, below, when we compare our measure to the

L-M measure.
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Table 1: Importance and Ranking of Links in Example 1

Link Importance Value Importance Importance Value Importance Importance Value Importance Ranking

from Ranking from from the Ranking from from the from the

Our Measure Our Measure L-M Measure L-M Measure Zhu et al. Measure Zhu et al. Measure

a 0.5000 1 N/A N/A 1.0000 1
b 0.5000 1 N/A N/A 1.0000 1
c 0.1630 2 N/A N/A 0.6774 2
d 0.0422 3 0.5119 1 0.0242 3
e 0.1630 2 N/A N/A 0.6774 2
f 0.0422 3 0.5119 1 0.0242 3

Table 2: Importance and Ranking of Nodes in Example 1

Node Importance Value Importance Importance Value Importance Importance Value Importance Ranking

from Ranking from from the Ranking from from the from the

Our Measure Our Measure L-M Measure L-M Measure Zhu et al. Measure Zhu et al. Measure

0 1.0000 1 N/A N/A N/A N/A
1 0.5000 2 0.7303 1 1.0000 1
2 0.5000 2 0.7303 1 1.0000 1
3 0.1630 3 -0.5166 3 N/A N/A
4 0.1630 3 0.6967 2 N/A N/A

Example 2 – A Larger Fixed Demand Network

The second example consisted of 20 nodes, 28 links, and 8 O/D pairs, and is depicted

in Figure 2.

A similar transportation network had been used previously in Nagurney [17] where

it is referred to as Network 20; see also Dhanda, Nagurney, and Ramanujam [9]. For

simplicity, and easy reproducibility, we considered separable user link cost functions,

which were adapted from Network 20 in Nagurney [17] with the cross-terms removed.

The O/D pairs were: w1 = (1, 20) and w2 = (1, 19) and the travel demands:
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Figure 2: Network for Example 2

dw1 = 100, and dw2 = 100. The link cost functions are given in Table 3.

We utilized the projection method (cf. Dafermos [6] and Nagurney [18]) with the

embedded Dafermos and Sparrow [8] equilibration algorithm (see also, e.g., [17]) to

compute the equilibrium solutions and to determine the network efficiency according

to (10) and well as the importance values and the importance rankings of the links

according to (15).

The computed efficiency measure for this network is: E = .002518. The computed

importance values of the links and their rankings for this transportation network are

reported in Table 3.

From the results in Table 3, it is clear that transportation planners and network

security officials should pay most attention to links: 1, 2, and 26, 27, since these

are the top four links in terms of importance rankings. On the other hand, the

elimination of links: 11, 13, 14, 15, and 17 should have no impact on the network

performance/efficiency.
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Table 3: Example 2 - Links, Link Cost Functions, Importance Values, and Importance
Rankings

Link a Link Cost Function ca(fa) Importance Value Importance Ranking
1 .00005f 4

1 + 5f1 + 500 0.9086 3
2 .00003f 4

2 + 4f2 + 200 0.8984 4
3 .00005f 4

3 + 3f3 + 350 0.8791 6
4 .00003f 4

4 + 6f4 + 400 0.8672 7
5 .00006f 4

5 + 6f5 + 600 0.8430 9
6 7f6 + 500 0.8226 11
7 .00008f 4

7 + 8f7 + 400 0.7750 12
8 .00004f 4

8 + 5f8 + 650 0.5483 15
9 .00001f 4

9 + 6f9 + 700 0.0362 17
10 4f10 + 800 0.6641 14
11 .00007f 4

11 + 7f11 + 650 0.0000 22
12 8f12 + 700 0.0006 20
13 .00001f 4

13 + 7f13 + 600 0.0000 22
14 8f14 + 500 0.0000 22
15 .00003f 4

15 + 9f15 + 200 0.0000 22
16 8f16 + 300 0.0001 21
17 .00003f 4

17 + 7f17 + 450 0.0000 22
18 5f18 + 300 0.0175 18
19 8f19 + 600 0.0362 17
20 .00003f 4

20 + 6f20 + 300 0.6641 14
21 .00004f 4

21 + 4f21 + 400 0.7537 13
22 .00002f 4

22 + 6f22 + 500 0.8333 10
23 .00003f 4

23 + 9f23 + 350 0.8598 8
24 .00002f 4

24 + 8f24 + 400 0.8939 5
25 .00003f 4

25 + 9f25 + 450 0.4162 16
26 .00006f 4

26 + 7f26 + 300 0.9203 2
27 .00003f 4

27 + 8f27 + 500 0.9213 1
28 .00003f 4

28 + 7f28 + 650 0.0155 19
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4.2 An Elastic Demand Network Example

Example 3: A Network with Elastic Demands

We return now to Example 1 except that, now, we let the demand for O/D pairs

w1 and w2 be elastic, so that the problem is as described in Section 2.1, where,

specifically, we have that:

λw1(dw1) = 100 − dw1, λw2(dw2) = 40 − dw2.

It is easy to calculate the following equilibrium solution (cf. (6)):

x∗
p1

= 24, x∗
p2

= 24, x∗
p3

= 4, x∗
p4

= 4,

d∗
w1

= 48, d∗
w2

= 8

so that:

λw1 = 52, λw2 = 32.

Our network performance/efficiency measure for Example 3 is:

E(G, d) =
1

nW

[
dw1

λw1

+
dw2

λw2

]
=

48
52

+ 8
32

2
= 0.5865.

The L-M measure for Example 3 is:

E(G) =
1

n(n − 1)

[
1

d01
+

1

d02
+

1

d03
+

1

d04
+

1

d13
+

1

d14
+

1

d23
+

1

d24

]

=
1

20

[
1

28
+

1

28
+

1

52
+

1

32
+

1

24
+

1

4
+

1

24
+

1

4

]
= 0.0353.

As discussed in Section 3.1, the Zhu et al. [30] measure cannot be used to assess

networks with elastic demands. Therefore, in Tables 4 and 5, only the importance

of links and nodes and their rankings using our measure and the L-M measure are

given.

As discussed in Section 3, by adding an abstract (and infinite cost) path to a

disconnected O/D pair, our measure can be used to study networks with disconnected
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Table 4: Importance and Ranking of Links in Example 3

Link Importance Value Importance Ranking Importance Value Importance Ranking
from from from the from the

Our Measure Our Measure L-M Measure L-M Measure
a 0.5327 1 N/A N/A
b 0.5327 1 N/A N/A
c 0.1475 2 N/A N/A
d 0.0533 3 0.4516 1
e 0.1475 2 N/A N/A
f 0.0533 3 0.4516 1

Table 5: Importance and Ranking of Nodes in Example 3

Node Importance Value Importance Ranking Importance Value Importance Ranking
from from from the from the

Our Measure Our Measure L-M Measure L-M Measure
0 1.0000 1 N/A N/A
1 0.5327 2 0.2775 2
2 0.5327 2 0.2775 2
3 0.1475 3 0.3509 1
4 0.1475 3 0.3509 1

O/D pairs. This feature enables us to investigate the importance of nodes 3 and 4 in

the Examples 1 and 3 while the Zhu et al. [30] measure is then undefined.

5. Conclusions and Future Research Directions

In this paper, we introduced a unified network performance/efficiency measure,

which can be applied to evaluate the network efficiency of different types of networks

whether the demands on the network are fixed or elastic. The measure assesses the

network efficiency by incorporating flows, and costs, along with behavior, all impor-

tant factors when dealing with network vulnerability and reliability. Future research
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will utilize the above measure to identify the important/vulnerable components of

large-scale networks in a variety of distinct network settings and applications.
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