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A B S T R A C T

This paper proposes a centralized supply chain network optimization model that maximizes
the total profit obtained by a company that produces and/or outsources production, stores,
ships and sells products to customers using a fleet made up of trucks and, in the last mile,
also of drones. The model includes realistic features of unmanned aerial vehicles (UAVs) in
the form of drones with fundamental limitations such as low battery capacities and short
delivery ranges. The constrained nonlinear optimization problem is formulated as a variational
inequality. Existence and uniqueness results for the solution of the variational inequality are
provided along with the results of detailed numerical simulations that emphasize the advantages
of the use of a hybrid fleet from enhanced profits to reduction in air pollution. Our quantitative
results reveal great promise and insights for the logistics industry in the use of emerging UAV
technologies for last mile parcel deliveries as a practical solution within a holistic supply chain
network context.

1. Introduction

Unmanned aerial vehicles (UAVs), also known as drones, were originally used for military purposes. Following the rapid
technological progress recorded during the 2000s and, thanks to their versatility, UAVs have also been used in the civilian sector,
where they are employed in aerial surveillance, in aerial cinematographic shots, in operations search and rescue missions, in the
monitoring of power lines and oil pipelines, and in the monitoring of flora and fauna. In 2013, Amazon first announced 30-m drone
deliveries and the company successfully piloted its so-called ‘Prime Air’ drone delivery service in Cambridge, UK in December
2016 and in the USA in March 2017. Later, many other companies, such as Walmart, DHL, UPS, FedEx, Uber Eats, and others,
also chose delivery-by-drone in order to provide faster-than-ever service (Herrera and Cervantes, 2019). Parallel to advances in
UAV technologies, customer expectations of delivery options have risen with the real-time tracking of orders, same-day and free
delivery options, growing service requirements and even greater supply chain complexity. The use of drones for delivery services,
nevertheless, reveals some difficulties. First of all, drones can often only carry light and low-volume parcels, and usually only one
package at a time. Furthermore, they have a limited battery life, which allows them to go only for short distances. Hence, a hybrid
delivery system combining traditional trucks and drones may reduce traffic issues, costs, including environmental ones, and, at the
same time, address flight range limitations, as the transportation is initially done with trucks and, in the last mile, the delivery can
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be done also with drones. Drones can also be launched from trucks in a hybrid system (see Bakir and Özbaygın Tiniç (2020) and
Burns (2017)).

Last mile delivery can be defined as the process of delivering a shipment from a transportation hub to the final delivery
estination. This means that the last phase of the supply chain network has been reached and the product is almost at the end
f its journey. In our model in this paper, we construct a supply chain network with five sets of nodes consisting of a company at
he top, warehouses of third-party sellers and of the company in the second tier of nodes, followed by fulfillment centers, and then
elivery stations, with customer locations at the bottom tier. Trucks are involved in the transportation of the products between all
he tiers, but, in the final stretch, which is the last mile, also drones can be used. The transportation takes place on links of the
upply chain network that join the nodes. Obviously, the advantage of using trucks consists mainly in their large load capacity and
n their ability to make long journeys, while the use of drones can reduce traffic congestion and pollutant emissions in urban areas,
educe fuel and manpower consumption, eliminate the need for parking, and improve the timeliness of deliveries.

The last leg or link in the supply chain network may be less than a mile in length or it may be hundreds of miles long: what
s important is that the last mile takes deliveries from the delivery stations to the end customers. This transportation component
s, typically, a complex, expensive part of the supply chain network. Imagine the hundreds, if not thousands, of deliveries made by
company each day. The use of drones for last mile delivery has gained significant attention in recent years due to its potential

o improve delivery efficiency and to reduce transportation costs as well as environmental costs. Many scientists have conducted
esearch on optimizing the last mile with drones (see Eskandaripour and Boldsaikhan (2023) for a literature review in which authors
elected a collection of recent papers and classified them as routing, cargo distribution optimization, battery management, data
ommunication and environmental protection). See Macrina et al. (2020) for a survey of routing problems with drones, primarily
n the context of parcel delivery.

In Rabta et al. (2018), the authors studied humanitarian logistics; specifically, they analyzed drone applications in last mile
istribution and proposed an optimization model for the delivery of multiple packages of light-weight relief items via drones to
emote locations within a disaster prone area (see also Colajanni et al. (2023, 2022) for optimization models for the provision of
ervices with UAVs in disaster management phases, and of the 5G-network edge in rural areas, respectively). In Chiang et al. (2019),
he authors proved that using UAVs for last mile logistics is not only cost-effective, but also reduces carbon emissions. They proposed

mixed-integer linear routing model for UAV last mile parcel deliveries and developed a genetic algorithm. Some researchers
ave also studied the optimal location of drone-beehives based on an economic viability criterion (see, for example, Aurambout
t al. (2019) where four different scenarios are analyzed to estimate the potential benefit obtained by citizens from last mile drone
elivery services, through a modeling framework using high-resolution data on the EU-wide population and land use). Borghetti
t al. in Borghetti et al. (2022) carried out a stated preferences analysis in a real case study in the city of Milan in order to assess
he propensity of users to use drones or not. The authors also performed a financial feasibility analysis to evaluate the costs and the
evenues for a logistics operator in charge of the UAV-based last mile logistics service.

Many researchers have investigated delivery networks with trucks and drones simultaneously. The first study considering drone-
ruck collaboration dates back to 2015. In Murray and Chu (2015), the authors presented a Mixed Integer Linear Programming
roblem with the aim of minimizing the time at which both vehicles complete service and return to the depot such that every
ustomer is either served by the truck, or by the drone that operates in synchronization with the truck. Subsequently, many other
uthors have used mixed integer linear programming models and heuristic or exact algorithms to investigate several variants of the
roblem of finding the optimal routing for a set of trucks and a set of drones operating jointly (see, for instance, Agatz et al. (2018),
ouman et al. (2018), Cavani et al. (2021), de Freitas and Penna (2020) and Wang et al. (2019)). In Bakir and Özbaygın Tiniç
2020), the authors introduce a vehicle routing problem with flexible drones aiming at minimizing the return time of the very
ast vehicle (drone or truck) to the depot after completing its service. In Chu et al. (2021), the authors consider how an online
ood delivery platform can improve last mile delivery services’ performance using multi-source data. They propose a data-driven
ptimization approach that combines machine learning techniques with capacitated vehicle routing optimization. In Özarik et al.
2021), the authors study the Vehicle Routing and Scheduling Problem with Time-Dependent Costs in which the probability of a
uccessful delivery is taken into account when planning the vehicle routes. In Salama and Srinivas (2020), the authors optimize the
artitioning of delivery locations into small clusters, so that from each focal point per cluster (that is, drone launch location), where
truck is parked, a drone fleet is launched towards the nearby customer locations. They also analyzed the route of the truck (through
ll the launch locations) such that the customer demands are met by a drone or truck. Authors in Boccia et al. (2021) proposed
compact Integer Linear Programming formulation for a variant of the Traveling Salesman Problem where routing decisions are

ntegrated with customer-to-drone and customer-to-truck assignment decisions and truck-and-drone synchronization constraints.
nother problem where the movements of a single truck and multiple UAVs (launched from the truck) are synchronized is proposed

n Moshref-Javadi et al. (2020), where the mathematical model aims to allocate customers to UAVs and the truck. In the latter,
he authors formulated a Mixed-Integer Linear Programming Problem and developed a routing algorithm with the objective of
inimizing customer waiting times for deliveries.

In this paper, we study a five-tier supply chain network for a company which can buy from third-party sellers and/or can produce
n-house and sells different products which are stored in different warehouses. Such warehouses are geographically distributed and
re connected to fulfillment centers, which handle order processing, picking, packing and shipping. The products are then transported
o the delivery stations which are physical locations out of which the company conducts its logistics delivery services. Finally, the
roducts are delivered to the customers at their locations by trucks and/or drones.

We analyze the entire supply chain network, including the last mile delivery, which can be done by trucks and/or by using
2

rones. We study the problem from a system point of view; that is, from that of the company, which coordinates and manages the
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whole process. We obtain a nonlinear optimization problem with the aim of maximizing the total profit of the company, given by
the difference between the total revenues and the total costs. The model proposed in this paper seeks to determine the optimal
quantities of products to buy from third-party sellers and/or to self-produce and the optimal flows for each link of the network.
The proposed model is able to establish which nodes of the network are best to use from an optimization perspective and the
same for the links, and whether to make last mile delivery with drones and/or with trucks. Our supply chain network optimization
model also takes into account the maximum capacity of trucks and drones and the maximum distance that a drone can reach, due
to its battery duration. Furthermore, the model includes an environmental component in the form of incentives for using drones
to reduce congestion and pollution. The numerical simulations we provide, firstly, suggest that using UAVs at the last mile can
significantly improve the objective function of profit maximization, by reducing the delivery costs. Another consequence of the
use of drones is the reduction of environmental emissions. Some additional supply chain network configurations also reveal how
the proposed model takes into account real drone limitations, such as their limited capacity and battery life. Finally, a sensitivity
analysis demonstrates that the choice of incentives (by National Institutions) can affect the environmental impacts, since companies
alter their decision-making strategies accordingly.

The paper is organized as follows. In Section 2, we describe the supply chain network and in Section 3, we introduce the variables,
he parameters and the functions that allow us to present the constrained nonlinear optimization problem. In Section 4, we deduce
he associated variational inequality formulation and provide the related existence and uniqueness results. In Section 5, we present
etailed results of numerical simulations in order to illustrate key aspects of the centralized supply chain network optimization
odel and to validate its effectiveness. Finally, Section 6 is devoted to our conclusions and further research.

. The supply chain network description

We consider a supply chain network as the one depicted in Fig. 1, where five different tiers are present. At the top level node,
here is a company (such as Amazon) that can produce the products and/or store the self-produced products at its warehouse 𝑊𝐼+1

located in the second tier of nodes. In the second tier, there are also 𝐼 third-party sellers’ warehouses, where the typical one is
denoted by 𝑖. We consider 𝐿 different kinds of products, with the typical one denoted by 𝑙. In the third level of nodes of the supply
chain network, there are 𝐽 fulfillment centers, with the typical one denoted by 𝑗; in the fourth tier, there are 𝑆 delivery stations,

ith the typical one denoted by 𝑠. Finally, in the bottom tier, there are 𝐾 customer locations, with the typical one denoted by
𝑘. The different nodes of the supply chain network are connected by links. Specifically, the links between the company and the
third-party sellers’ warehouses and the company’s warehouse are virtual links (denoted with dashed arrows in Fig. 1), since actually
there is no transportation of commodities between the first and the second tiers of the network. These links could, nevertheless,
be associated with some economic activities. Specifically, we assume that links between the company and the third-party sellers’
warehouses are associated with the purchasing of products, while the link between the company and its warehouse is associated
with the manufacturing activity. Moreover, we assume that the products produced by the third-party sellers or the company are
sold and sent from the warehouses to the fulfillment centers. From fulfillment centers the products can be sent both to delivery
stations or directly to customers. Finally, delivery stations ship the products to the customers. Furthermore, trucks are used for
long journeys and heavy goods and, therefore, in the transportation of products between: warehouses and fulfillment centers, the
fulfillment centers and the delivery stations or the fulfillment centers and the customers. In the ‘‘last mile’’; that is, the final stretch
that connects delivery stations and customer locations, both trucks or drones can be used. We denote by black arrows the links
associated with trucks and by blue dashed arrows the links associated with drones. As noted in the Introduction, the use of drones
or other types of Unmanned Aerial Vehicles in the ‘‘last mile’’ is justified by the need to reduce pollution and congestion in urban
areas. For this reason, we also introduce an incentive to use this means of transport.

Furthermore, as related to Amazon as the company, there exist two types of fulfillment. According to Fulfillment By Amazon
(FBA), factories sell their products to Amazon and, when a customer makes a purchase, Amazon picks, packs and ships the order.
On the other hand, Fulfillment By Merchant (FBM) is when the factory handles the entire shipping process. It uses its own resources
and sends the products directly to the customers. In this paper, we analyze the FBA type of fulfillment. Therefore, the aim of the
company is to maximize the total profit of its supply chain network.

In this paper, we are assuming that, for both the battery life and the drone capacity, each drone starts at 𝐷𝑠, reaches 𝐶𝑘, and
omes back (i.e., does not route). Indeed, there could be more trucks or drones making the same journey when there is a need
o increase the total maximum capacity. Therefore, we are not focusing on the Vehicle Routing Problem (VRP). Hence, in our
ramework, it does not matter if it is a single truck that, for example, starts from 𝐺𝑗 and goes to two or more 𝐷𝑠 or if it is the case
f multiple trucks that go to a single 𝐷𝑠.

. The optimization problem

In this section, we focus on the mathematical formulation of the problem. As previously described, the supply chain network con-
ists of 𝐼 +1 warehouses (𝑊1,… ,𝑊𝑖,… ,𝑊𝐼 ,𝑊𝐼+1), 𝐽 fulfillment centers (𝐺1,… , 𝐺𝑗 ,… , 𝐺𝐽 ), 𝑆 delivery stations (𝐷1,… , 𝐷𝑠,… , 𝐷𝑆 )

and 𝐾 customer locations (𝐶1, …, 𝐶𝑘, …, 𝐶𝐾 ). Moreover, we take into account 𝐿 different types of products. In Table 1, we report
the symbols and definition of all the sets.

The aim of the supply chain network optimization problem is to determine:

• the optimal quantities of each product 𝑙 ∈ 𝐿 that the company has to buy from third-party sellers (𝛼𝑙𝑖 , ∀𝑖 = 1,… , 𝐼) and to
𝑙

3

self-produce (𝛼𝐼+1);
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Fig. 1. Supply chain network topology.

Table 1
Symbols and definitions of sets.
Sets Definitions

𝑊 = {𝑊𝑖 ∶ 𝑖 = 1,… , 𝐼 + 1} Set of warehouses
𝐺 = {𝐺𝑗 ∶ 𝑗 = 1,… , 𝐽} Set of fulfillment centers
𝐷 = {𝐷𝑠 ∶ 𝑠 = 1,… , 𝑆} Set of delivery stations
𝐶 = {𝐶𝑘 ∶ 𝑘 = 1,… , 𝐾} Set of customer locations
 = {𝑙 ∶ 𝑙 = 1,… , 𝐿} Index set of products

Table 2
Symbols and definitions of variables.
Variables Definitions

𝛼𝑙
𝑖 Quantity (in kg) of product 𝑙 produced by a third-party seller, bought by the

company (for the customers) and stored in the third-party seller’s warehouse
𝑊𝑖 , 𝑖 = 1,… , 𝐼 . While 𝛼𝑙

𝐼+1 represents the quantity (in kg) of product 𝑙
produced by the company. We group such quantities into the vector
𝛼 ∈ R(𝐼+1)𝐿

+ .
𝑥𝑙𝑖𝑗 Quantity of product 𝑙 sent by 𝑊𝑖 to 𝐺𝑗 , 𝑖 = 1,… , 𝐼 + 1, 𝑗 = 1,… , 𝐽 (in kg). We

group such quantities into the vectors 𝑥𝑖𝑗 ∈ R𝐿
+ and 𝑥 ∈ R(𝐼+1)𝐽𝐿

+ .
𝑦𝑙𝑗𝑠 Quantity of product 𝑙 sent by 𝐺𝑗 to 𝐷𝑠 , 𝑗 = 1,… , 𝐽 , 𝑠 = 1,… , 𝑆 (in kg). We

group such quantities into the vectors 𝑦𝑗𝑠 ∈ R𝐿
+ , 𝑦𝑗 ∈ R𝐿𝑆

+ and 𝑦 ∈ R𝐽𝑆𝐿
+ .

𝑧𝑙𝑗𝑘 Quantity of product 𝑙 sent by 𝐺𝑗 to 𝐶𝑘 , 𝑗 = 1,… , 𝐽 , 𝑘 = 1,… , 𝐾 (in kg). We
group such quantities into the vectors 𝑧𝑗𝑘 ∈ R𝐿

+ , 𝑧𝑗 ∈ R𝐿𝐾
+ and 𝑧 ∈ R𝐽𝐾𝐿

+ .
𝑤1𝑙

𝑠𝑘 Quantity of product 𝑙 sent by 𝐷𝑠 , to 𝐶𝑘 𝑠 = 1,… , 𝑆, 𝑘 = 1,… , 𝐾 (in kg) via
trucks. We group such quantities into the vectors 𝑤1

𝑠𝑘 ∈ R𝐿
+ and 𝑤1 ∈ R𝑆𝐾𝐿

+ .
𝑤2𝑙

𝑠𝑘 Quantity of product 𝑙 sent by 𝐷𝑠 , to 𝐶𝑘 𝑠 = 1,… , 𝑆, 𝑘 = 1,… , 𝐾 (in kg) via
drones. We group such quantities into the vectors 𝑤2

𝑠𝑘 ∈ R𝐿
+ and 𝑤2 ∈ R𝑆𝐾𝐿

+ .

• the optimal quantities of each product 𝑙 ∈ 𝐿 that the company has to transport from each warehouse 𝑊𝑖, ∀𝑖 = 1,… , 𝐼 + 1 to
each fulfillment center 𝐺𝑗 , ∀𝑗 = 1,… , 𝐽 (𝑥𝑙𝑖𝑗 , ∀𝑙 = 1,… , 𝐿, ∀𝑖 = 1,… , 𝐼 + 1, ∀𝑗 = 1,… , 𝐽 );

• the optimal quantities of each product 𝑙 ∈ 𝐿 that the company has to transport from each fulfillment center 𝐺𝑗 , ∀𝑗 = 1,… , 𝐽
to each delivery station 𝐷𝑠, ∀𝑠 = 1,… , 𝑆 (𝑦𝑙𝑗𝑠, ∀𝑙 = 1,… , 𝐿, ∀𝑗 = 1,… , 𝐽 , ∀𝑠 = 1,… , 𝑠) and to each customer location
𝐶𝑘, ∀𝑘 = 1,… , 𝐾 (𝑧𝑙𝑗𝑘, ∀𝑙 = 1,… , 𝐿, ∀𝑗 = 1,… , 𝐽 , ∀𝑘 = 1,… , 𝐾);

• the optimal quantities of each product 𝑙 ∈ 𝐿 that the company has to transport from each delivery station 𝐷𝑠, ∀𝑠 = 1,… , 𝑆
to each customer location 𝐶𝑘, ∀𝑘 = 1,… , 𝐾 via trucks (𝑤1𝑙

𝑠𝑘, ∀𝑙 = 1,… , 𝐿, ∀𝑠 = 1,… , 𝑆, ∀𝑘 = 1,… , 𝐾) and via drones
(𝑤2𝑙

𝑠𝑘, ∀𝑙 = 1,… , 𝐿, ∀𝑠 = 1,… , 𝑆, ∀𝑘 = 1,… , 𝐾);

Table 2 summarizes all the variables and their definitions.
4
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Table 3
Symbols and definitions of parameters.
Parameters Definitions

𝛾 𝑙𝑖 Purchase price of product 𝑙 from 𝑊𝑖 , 𝑖 = 1,… , 𝐼 ; while 𝛾 𝑙𝐼+1 is the production cost for
the good 𝑙, when it is produced by the company (in e)

𝐼𝑠𝑘 Incentive for using drones (to reduce pollution and congestion) on the link between
𝐷𝑠 and 𝐶𝑘

𝛾 𝑙𝑗𝑘 Selling price of product 𝑙 from 𝐺𝑗 to 𝐶𝑘, established by the company (in e)
𝛾 𝑙𝑠𝑘 Selling price of product 𝑙 from 𝐷𝑠 to 𝐶𝑘, established by the company (in e)
𝑄𝑙

𝑖 Maximum quantity (in kg) of product 𝑙 available at 𝑊𝑖

𝑟𝑙𝑘 Demand of product 𝑙 from customer location 𝐶𝑘 (in kg)
𝑛𝑡𝑟𝑖 Number of trucks available at 𝑊𝑖
𝑊 Maximum capacity of each truck (in kg)
𝑛𝑑𝑟𝑠 Number of drones available at 𝐷𝑠
𝑝𝑑 Maximum weight that each drone is able to carry (in kg)
𝑝𝑙 Weight of a unit of product 𝑙 (in kg)

𝑃 𝑑𝑟
𝑙 A parameter that is equal to 0 if 𝑝𝑙 > 𝑝𝑑 , otherwise (if 𝑝𝑙 ≤ 𝑝𝑑 ) it is equal to

𝐾
∑

𝑘=1
𝑟𝑙𝑘

𝑑𝑠𝑘 Distance between delivery station 𝐷𝑠 and customer location 𝐶𝑘 (in km)
𝑏𝑑 Drone battery life, that is, the distance allowed taking into account both outward

and return trips (in km)

𝐵𝑑𝑟
𝑠𝑘 A parameter that is equal to 0 if 𝑑𝑠𝑘 > 𝑏𝑑 , while it is equal to

𝐾
∑

𝑘=1
𝑟𝑙𝑘 if 𝑑𝑠𝑘 ≤ 𝑏𝑑

Table 4
Symbols and definitions of functions.
Functions Definitions

𝑐(𝛼, 𝑥, 𝑦, 𝑧, 𝑤1 , 𝑤2) Handling costs of the company, which include managing costs
𝑐𝑖𝑗 (𝑥𝑖𝑗 ) Transportation cost from 𝑊𝑖 to 𝐺𝑗
𝑐𝑗𝑠(𝑦𝑗𝑠 , 𝑧𝑗 ) Transportation cost from 𝐺𝑗 to 𝐷𝑠
𝑐𝑗𝑘(𝑦𝑗 , 𝑧𝑗𝑘) Transportation cost from 𝐺𝑗 to 𝐶𝑘

𝑐1𝑠𝑘(𝑤
1
𝑠𝑘) Transportation cost from 𝐷𝑠 to 𝐶𝑘 through trucks

𝑐2𝑠𝑘(𝑤
2
𝑠𝑘) Transportation cost from 𝐷𝑠 to 𝐶𝑘 through drones

𝑐𝑡𝑟𝑖 (𝛼,𝑤
2) Handling costs of 𝑊𝑖 for the trucks; they depend on 𝛼 and 𝑤2 because the size of

the truck chosen depends on the quantity of goods to be transported by trucks
𝑐𝑑𝑟𝑠 (𝑤2) Handling costs of 𝐷𝑠 for the drones, including drone battery disposal costs

Tables 3 and 4 show all the parameters and the cost functions of the model, respectively.
We are interested in optimizing the supply chain network of the company, whose aim is to maximize its profits. Therefore, the

ompany seeks to maximize the difference between the revenue and the costs. Hence, the objective function consists of:

• the handling costs of the company (𝐶 (ℎ𝑎𝑛𝑑) = 𝑐(𝛼, 𝑥, 𝑦, 𝑧, 𝑤1, 𝑤2));
• the total expense for the purchase of products, 𝐶𝑃𝑢𝑟𝑃 𝑟, from all 𝑊𝑖, 𝑖 = 1,… , 𝐼

(

∑𝐿
𝑙=1

∑𝐼
𝑖=1 𝛾

𝑙
𝑖 𝛼

𝑙
𝑖

)

and the production cost for
products, when they are produced by the company itself (𝛾 𝑙𝐼+1𝛼

𝑙
𝐼+1);

• the total transportation cost from each warehouse to each fulfillment center
(

𝐶 (𝑊𝐺) =
∑𝐼+1

𝑖=1
∑𝐽

𝑗=1 𝑐𝑖𝑗 (𝑥𝑖𝑗 )
)

; from each fulfill-

ment center to each delivery station
(

𝐶 (𝐺𝐷) =
∑𝐽

𝑗=1
∑𝑆

𝑠=1 𝑐𝑗𝑠(𝑦𝑗𝑠, 𝑧𝑗 )
)

; from each fulfillment center to each customer location
(

𝐶 (𝐺𝐶) =
∑𝐽

𝑗=1
∑𝐾

𝑘=1 𝑐𝑗𝑘(𝑦𝑗 , 𝑧𝑗𝑘)
)

; from each delivery station to each customer location via truck
(

𝐶 (𝐷𝐶)
𝑡𝑟 =

∑𝑆
𝑠=1

∑𝐾
𝑘=1 𝑐

1
𝑠𝑘(𝑤

1
𝑠𝑘)

)

;

and from each delivery station to each customer location via drone
(

𝐶 (𝐷𝐶)
𝑑𝑟 =

∑𝑆
𝑠=1

∑𝐾
𝑘=1 𝑐

2
𝑠𝑘(𝑤

2
𝑠𝑘)

)

;

• the incentive for sustainable mobility (in order to reduce pollution and congestion) that the company receives from the
National Institution if it uses drones (instead of trucks), in the links between the delivery stations and the customer locations
(

𝐼𝑆𝑀 =
∑𝐿

𝑙=1
∑𝑆

𝑠=1
∑𝐾

𝑘=1 𝐼𝑠𝑘𝑤
2𝑙
𝑠𝑘

)

;

• the handling costs of all trucks
(

𝐶 (𝑡𝑟) =
∑𝐼+1

𝑖=1 𝑐𝑡𝑟𝑖 (𝛼,𝑤
2)
)

and of all drones
(

𝐶 (𝑑𝑟) =
∑𝑆

𝑠=1 𝑐
𝑑𝑟
𝑠 (𝑤2)

)

;

• the total revenues, 𝑇𝑅, obtained from the selling of products from each fulfillment center to each customer
(

∑𝐿
𝑙=1

∑𝐽
𝑗=1

∑𝐾
𝑘=1 𝛾

𝑙
𝑗𝑘

𝑧𝑙𝑗𝑘
)

; and those obtained from the selling of products from each delivery station to each customer via trucks and drones
(

∑𝐿
𝑙=1

∑𝑆
𝑠=1

∑𝐾
𝑘=1 𝛾

𝑙
𝑠𝑘𝑤

1𝑙
𝑠𝑘 and ∑𝐿

𝑙=1
∑𝑆

𝑠=1
∑𝐾

𝑘=1 𝛾
𝑙
𝑠𝑘𝑤

2𝑙
𝑠𝑘

)

.

bserve that the revenues (𝛾 𝑙𝑗𝑘 and 𝛾 𝑙𝑠𝑘) take into account the only gains obtained by the company.
We remark that, in reality, not all the third-party sellers’ warehouses need to provide products to all the fulfillment centers,
5

nd not all the fulfillment centers need to be connected to all the delivery stations or all the customers locations, and not all the
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delivery stations need to be associated with all the customer locations. In this paper, since the transportation costs differ according
to the origin and destination of the link, we also take into account this important and real aspect of different distances that may
be involved for transportation between nodes. Of course, one could also associate a very high cost with a link, which would work
essentially like the link being unavailable.

The optimization problem is as follows:

max
𝛼,𝑥,𝑦,𝑧,𝑤1 ,𝑤2

{

−𝑐(𝛼, 𝑥, 𝑦, 𝑧, 𝑤1, 𝑤2) −
𝐿
∑

𝑙=1

𝐼+1
∑

𝑖=1
𝛾 𝑙𝑖 𝛼

𝑙
𝑖 −

𝐼+1
∑

𝑖=1

𝐽
∑

𝑗=1
𝑐𝑖𝑗 (𝑥𝑖𝑗 ) −

𝐽
∑

𝑗=1

𝑆
∑

𝑠=1
𝑐𝑗𝑠(𝑦𝑗𝑠, 𝑧𝑗 )

−
𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
𝑐𝑗𝑘(𝑦𝑗 , 𝑧𝑗𝑘) −

𝑆
∑

𝑠=1

𝐾
∑

𝑘=1
𝑐1𝑠𝑘(𝑤

1
𝑠𝑘) −

𝑆
∑

𝑠=1

𝐾
∑

𝑘=1
𝑐2𝑠𝑘(𝑤

2
𝑠𝑘) +

𝐿
∑

𝑙=1

𝑆
∑

𝑠=1

𝐾
∑

𝑘=1
𝐼𝑠𝑘𝑤

2𝑙
𝑠𝑘 (1)

−
𝐼+1
∑

𝑖=1
𝑐𝑡𝑟𝑖 (𝛼,𝑤

2) −
𝑆
∑

𝑠=1
𝑐𝑑𝑟𝑠 (𝑤2) +

𝐿
∑

𝑙=1

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
𝛾 𝑙𝑗𝑘𝑧

𝑙
𝑗𝑘 +

𝐿
∑

𝑙=1

𝑆
∑

𝑠=1

𝐾
∑

𝑘=1
𝛾 𝑙𝑠𝑘𝑤

1𝑙
𝑠𝑘 +

𝐿
∑

𝑙=1

𝑆
∑

𝑠=1

𝐾
∑

𝑘=1
𝛾 𝑙𝑠𝑘𝑤

2𝑙
𝑠𝑘

}

𝛼𝑙𝑖 ≤ 𝑄𝑙
𝑖 , ∀𝑙 = 1,… , 𝐿, ∀𝑖 = 1,… , 𝐼 + 1 (2)

𝐽
∑

𝑗=1
𝑥𝑙𝑖𝑗 ≤ 𝛼𝑙𝑖 , ∀𝑙 = 1,… , 𝐿, ∀𝑖 = 1,… , 𝐼 + 1 (3)

𝐼+1
∑

𝑖=1
𝑥𝑙𝑖𝑗 ≥

𝑆
∑

𝑠=1
𝑦𝑙𝑗𝑠 +

𝐾
∑

𝑘=1
𝑧𝑙𝑗𝑘, ∀𝑗 = 1,… , 𝐽 , ∀𝑙 = 1,… , 𝐼 (4)

𝐽
∑

𝑗=1
𝑦𝑙𝑗𝑠 ≥

𝐾
∑

𝑘=1
𝑤1𝑙

𝑠𝑘 +
𝐾
∑

𝑘=1
𝑤2𝑙

𝑠𝑘, ∀𝑠 = 1,… , 𝑆, ∀𝑙 = 1,… , 𝐿 (5)

𝐽
∑

𝑗=1
𝑧𝑙𝑗𝑘 +

𝑆
∑

𝑠=1
𝑤1𝑙

𝑠𝑘 +
𝑆
∑

𝑠=1
𝑤2𝑙

𝑠𝑘 = 𝑟𝑙𝑘,∀𝑘 = 1,… , 𝐾, ∀𝑙 = 1,… , 𝐿 (6)

𝐿
∑

𝑙=1

𝐽
∑

𝑗=1
𝑥𝑙𝑖𝑗 ≤ 𝑊 ⋅ 𝑛𝑡𝑟𝑖 , ∀𝑖 = 1,… , 𝐼 + 1 (7)

𝐿
∑

𝑙=1

𝐾
∑

𝑘=1
𝑤2𝑙

𝑠𝑘 ≤ 𝑝𝑑𝑛
𝑑𝑟
𝑠 , ∀𝑠 = 1,… , 𝑆 (8)

𝑤2𝑙
𝑠𝑘 ≤ 𝑃 𝑑𝑟

𝑙 , ∀𝑙 = 1,… , 𝐿, ∀𝑠 = 1,… , 𝑆, ∀𝑘 = 1,… , 𝐾 (9)

𝑤2𝑙
𝑠𝑘 ≤ 𝐵𝑑𝑟

𝑠𝑘 , ∀𝑠 = 1,… , 𝐿, ∀𝑘 = 1,… , 𝐾, ∀𝑙 = 1,… , 𝐿 (10)
𝛼𝑙𝑖 , 𝑥

𝑙
𝑖𝑗 , 𝑦

𝑙
𝑗𝑠, 𝑧

𝑙
𝑗𝑘, 𝑤

1𝑙
𝑠𝑘, 𝑤

2𝑙
𝑠𝑘 ≥ 0

∀𝑙 = 1,… , 𝐿, ∀𝑖 = 1,… , 𝐼 + 1, ∀𝑗 = 1,… , 𝐽 , ∀𝑠 = 1,… , 𝑆, ∀𝑘 = 1,… , 𝐾. (11)

Constraint (2) ensures that the quantity of each type of product sold by a third-party seller to the company (or self-produced
y the organization) does not exceed the maximum quantity that can be produced. Constraint (3) establishes that the total amount
f product sent from a warehouse to all the fulfillment centers must be less than or equal to that bought by the correspondent
hird-party seller or that self-produced. Constraint (4) affirms that the quantity of product 𝑙 sent from 𝐺𝑗 to all the delivery stations

and the customers must be less than or equal to that received by all the warehouses. Constraint (5) states that the quantity of
product 𝑙 that 𝐷𝑠 receives from all the fulfillment centers must be greater than or equal to that which it sells to all customers in
oth ways (trucks and drones). Constraint (6) establishes that the request from each 𝐶𝑘 must be satisfied by all fulfillment centers

and all delivery stations. Constraint (7) states that the sum of weights of all the products that are shipped from each 𝑊𝑖 to all
fulfillment centers must not exceed the maximum capacity of the trucks available at node 𝑊𝑖. Obviously, such a constraint is also
uaranteed in the lower levels of the supply chain network, where smaller quantities of products are transported (since constraint
4) and constraint (5) hold). Constraint (8) states that the total weight of all the products transported from each 𝐷𝑠 to the customer
ocations must be less than or equal to the total capacity of the drones available at node 𝐷𝑠. Moreover, for the drone to be able
o carry any product (allocated on it), constraint (9) requires that the weight of the transported product 𝑙 (from 𝐷𝑠 to 𝐶𝑘) must be
ess than the capacity of the drone; otherwise, the drone cannot be used (and the truck is the only allowed transportation mode).
ote that such a constraint forbids that a single heavy product is carried by more than one drone. Indeed, if a unit of product 𝑙
eighs more than the maximum capacity allowed by the drone (that is, if 𝑝𝑙 > 𝑝𝑑), it cannot be transported by drone. Per definition,

in this case, the parameter 𝑃 𝑑𝑟
𝑙 = 0 and constraint (9) becomes 𝑤2𝑙

𝑠𝑘 ≤ 0, which is equivalent to 𝑤2𝑙
𝑠𝑘 = 0 (since the domain of the

ariable, constraint (11), holds). On the contrary, the parameter 𝑃 𝑑𝑟
𝑙 assumes such a large numerical value that the constraint (9)

s always satisfied. Indeed, the variable 𝑤2𝑙
𝑠𝑘 of the quantity of product 𝑙 sent from 𝐷𝑠 to 𝐶𝑘 must necessarily be less than the sum

f the requests for product 𝑙 from all the customer locations. Constraint (10) guarantees that, if the distance between a node of the
ourth level and a node of the last level exceeds the duration (in meters) of the drone battery (that is, if 𝑑𝑠𝑘 > 𝑏𝑑), the drone cannot

𝑑𝑟 2𝑙 2𝑙
6

e used (𝐵𝑠𝑘 = 0 ⇒ 𝑤𝑠𝑘 ≤ 0 ⇔ 𝑤𝑠𝑘 = 0).
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4. The variational inequality formulation

We now provide a variational formulation of problem (1)–(11). Variational inequalities, indeed, are a very powerful mathematical
ool both from a computational point of view as well as from a qualitative perspective since a solid theory of existence and uniqueness
f the solutions has been developed. The following well-known theorem holds (see Nagurney (1993)).

heorem 4.1. Let 𝑋∗ be a solution to the optimization problem:

min 𝑓 (𝑋)

subject to: 𝑋 ∈ , (12)

here 𝑓 is a continuously differentiable function and  is a closed (not empty) convex set. Then, 𝑋∗ is a solution to the variational inequality
roblem 𝑉 𝐼(𝐹 ,):

Find 𝑋∗ ∈  such that: ⟨𝐹 (𝑋∗), 𝑋 −𝑋∗
⟩ ≥ 0, ∀𝑋 ∈ , (13)

here 𝐹 (𝑋) ≡ ∇𝑓 (𝑋) is the gradient of 𝑓 (⋅),  ⊂ R𝑁 is the feasible set, and ⟨⋅, ⋅⟩ denotes the inner product in the Euclidean space R𝑁
+ .

oreover, if 𝑓 (𝑋) is a convex function and 𝑋∗ is a solution to 𝑉 𝐼(𝐹 ,), then 𝑋∗ is a solution to the optimization problem (12).

Let all the involved cost functions be continuously differentiable and convex. The following result allows us to obtain the
ariational formulation of the proposed model (see, for instance, Nagurney et al. (2017)).

heorem 4.2. A vector (𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗) ∈ K is an optimal solution to the problem (1)–(11) if and only if such a vector is a
olution to the variational inequality:

Find (𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗) ∈ K such that:
𝐼+1
∑

𝑖=1

𝐿
∑

𝑙=1

[

𝜕𝑐(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗)

𝜕𝛼𝑙𝑖
+ 𝛾 𝑙𝑖 +

𝜕𝑐𝑡𝑟𝑖 (𝛼
∗, 𝑤2∗)

𝜕𝛼𝑙𝑖

]

× (𝛼𝑙𝑖 − 𝛼𝑙∗𝑖 )

+
𝐼+1
∑

𝑖=1

𝐽
∑

𝑗=1

𝐿
∑

𝑙=1

[

𝜕𝑐(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗)

𝜕𝑥𝑙𝑖𝑗
+

𝜕𝑐𝑖𝑗 (𝑥∗𝑖𝑗 )

𝜕𝑥𝑙𝑖𝑗

]

× (𝑥𝑙𝑖𝑗 − 𝑥𝑙∗𝑖𝑗 )

+
𝐽
∑

𝑗=1

𝑆
∑

𝑠=1

𝐿
∑

𝑙=1

[

𝜕𝑐(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗)

𝜕𝑦𝑙𝑗𝑠
+

𝜕𝑐𝑗𝑠(𝑦∗𝑗𝑠, 𝑧
∗
𝑗 )

𝜕𝑦𝑙𝑗𝑠
+

𝜕𝑐𝑗𝑘(𝑦∗𝑗 , 𝑧
∗
𝑗𝑘)

𝜕𝑦𝑙𝑗𝑠

]

× (𝑦𝑙𝑗𝑠 − 𝑦𝑙∗𝑗𝑠)

+
𝐽
∑

𝑗=1

𝐾
∑

𝑘=1

𝐿
∑

𝑙=1

[

𝜕𝑐(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗)

𝜕𝑧𝑙𝑗𝑘
+

𝜕𝑐𝑗𝑠(𝑦∗𝑗𝑠, 𝑧
∗
𝑗 )

𝜕𝑧𝑙𝑗𝑘
+

𝜕𝑐𝑗𝑘(𝑦∗𝑗 , 𝑧
∗
𝑗𝑘)

𝜕𝑧𝑙𝑗𝑘
− 𝛾 𝑙𝑗𝑘

]

× (𝑧𝑙𝑗𝑘 − 𝑧𝑙∗𝑗𝑘)

+
𝑆
∑

𝑠=1

𝐾
∑

𝑘=1

𝐿
∑

𝑙=1

[

𝜕𝑐(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗)

𝜕𝑤1𝑙
𝑠𝑘

+
𝜕𝑐1𝑠𝑘(𝑤

1𝑙∗
𝑠𝑘 )

𝜕𝑤1𝑙
𝑠𝑘

− 𝛾 𝑙𝑠𝑘

]

× (𝑤1𝑙
𝑠𝑘 −𝑤1𝑙∗

𝑠𝑘 )

+
𝑆
∑

𝑠=1

𝐾
∑

𝑘=1

𝐿
∑

𝑙=1

[

𝜕𝑐(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗)

𝜕𝑤2𝑙
𝑠𝑘

+
𝜕𝑐2𝑠𝑘(𝑤

2𝑙∗
𝑠𝑘 )

𝜕𝑤2𝑙
𝑠𝑘

− 𝐼𝑠𝑘

+
𝜕𝑐𝑡𝑟𝑖 (𝛼

∗, 𝑤2∗)

𝜕𝑤2𝑙
𝑠𝑘

+
𝜕𝑐𝑑𝑟𝑠 (𝑤2∗)

𝜕𝑤2𝑙
𝑠𝑘

− 𝛾 𝑙𝑠𝑘

]

× (𝑤2𝑙
𝑠𝑘 −𝑤2𝑙∗

𝑠𝑘 ) ≥ 0

∀(𝛼, 𝑥, 𝑦, 𝑧, 𝑤1, 𝑤2) ∈ K, (14)

where

K ∶=
{

(𝛼, 𝑥, 𝑦, 𝑧, 𝑤1, 𝑤2) ∈ R𝐿[(𝐼+1)+𝐽 (𝐼+1)+𝐽𝑆+𝐽𝐾+2𝑆𝐾]
+ ∶ (2)–(10) ℎ𝑜𝑙𝑑

}

. (15)

Proof. Since the cost functions are continuously differentiable and convex, the function 𝑓 in (1) is continuously differentiable and
convex.

Let 𝑁 = 𝐿[(𝐼 + 1) + 𝐽 (𝐼 + 1) + 𝐽𝑆 + 𝐽𝐾 + 2𝑆𝐾] be the dimension of the vectors belonging to the feasible set. We define the
𝑁-dimensional vector 𝑋 = (𝛼, 𝑥, 𝑦, 𝑧, 𝑤1, 𝑤2) and the 𝑁-dimensional vector 𝐹 (𝑋) ≡ ∇𝑓 (𝑋) = (𝐹 1(𝑋), 𝐹 2(𝑋), 𝐹 3(𝑋), 𝐹 4(𝑋), 𝐹 5(𝑋),

6(𝑋)), where the (𝑖, 𝑙)th component, 𝐹 1
𝑖𝑙 , of 𝐹 1(𝑋) is given by

𝐹 1
𝑖𝑙 =

𝜕𝑐(𝛼, 𝑥, 𝑦, 𝑧, 𝑤1, 𝑤2)
𝜕𝛼𝑙𝑖

+ 𝛾 𝑙𝑖 +
𝜕𝑐𝑡𝑟𝑖 (𝛼,𝑤

2)

𝜕𝛼𝑙𝑖
,

the (𝑖, 𝑗, 𝑙)th component, 𝐹 2
𝑖𝑗𝑙, of 𝐹 2(𝑋) is given by

𝐹 2
𝑖𝑗𝑙 =

𝜕𝑐(𝛼, 𝑥, 𝑦, 𝑧,𝑤1, 𝑤2)
𝑙 +

𝜕𝑐𝑖𝑗 (𝑥𝑖𝑗 )
𝑙 ,
7

𝜕𝑥𝑖𝑗 𝜕𝑥𝑖𝑗
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the (𝑗, 𝑠, 𝑙)th component, 𝐹 3
𝑗𝑠𝑙, of 𝐹 3(𝑋) is given by

𝐹 3
𝑗𝑠𝑙 =

𝜕𝑐(𝛼, 𝑥, 𝑦, 𝑧, 𝑤1, 𝑤2)

𝜕𝑦𝑙𝑗𝑠
+

𝜕𝑐𝑗𝑠(𝑦𝑗𝑠, 𝑧𝑗 )

𝜕𝑦𝑙𝑗𝑠
+

𝜕𝑐𝑗𝑘(𝑦𝑗 , 𝑧𝑗𝑘)

𝜕𝑦𝑙𝑗𝑠
,

the (𝑗, 𝑘, 𝑙)th component, 𝐹 4
𝑗𝑘𝑙, of 𝐹 4(𝑋) is given by

𝐹 4
𝑗𝑘𝑙 =

𝜕𝑐(𝛼, 𝑥, 𝑦, 𝑧,𝑤1, 𝑤2)

𝜕𝑧𝑙𝑗𝑘
+

𝜕𝑐𝑗𝑠(𝑦𝑗𝑠, 𝑧𝑗 )

𝜕𝑧𝑙𝑗𝑘
+

𝜕𝑐𝑗𝑘(𝑦𝑗 , 𝑧𝑗𝑘)

𝜕𝑧𝑙𝑗𝑘
− 𝛾 𝑙𝑗𝑘,

the (𝑠, 𝑘, 𝑙)th component, 𝐹 5
𝑠𝑘𝑙, of 𝐹 5(𝑋) is given by

𝐹 5
𝑠𝑘𝑙 =

𝜕𝑐(𝛼, 𝑥, 𝑦, 𝑧,𝑤1, 𝑤2)

𝜕𝑤1𝑙
𝑠𝑘

+
𝜕𝑐1𝑠𝑘(𝑤

1𝑙
𝑠𝑘)

𝜕𝑤1𝑙
𝑠𝑘

− 𝛾 𝑙𝑠𝑘,

nd, finally, the (𝑠, 𝑘, 𝑙)th component, 𝐹 6
𝑠𝑘𝑙, of 𝐹 6(𝑋) is given by

𝐹 6
𝑠𝑘𝑙 =

𝜕𝑐(𝛼, 𝑥, 𝑦, 𝑧,𝑤1, 𝑤2)

𝜕𝑤2𝑙
𝑠𝑘

+
𝜕𝑐2𝑠𝑘(𝑤

2𝑙
𝑠𝑘)

𝜕𝑤2𝑙
𝑠𝑘

− 𝐼𝑠𝑘 +
𝜕𝑐𝑡𝑟𝑖 (𝛼,𝑤

2)

𝜕𝑤2𝑙
𝑠𝑘

+
𝜕𝑐𝑑𝑟𝑠 (𝑤2)

𝜕𝑤2𝑙
𝑠𝑘

− 𝛾 𝑙𝑠𝑘.

The feasible set  is defined as K and variational inequality problem (14) is put into standard form (13).
Moreover, the feasible set K, given the constraints (2)–(11), is clearly convex and closed. Therefore, Theorem 4.1 has been

established. □

Following the classical theory of variational inequalities (see, for instance, Nagurney (1993)), we have the following existence
result:

Theorem 4.3 (Existence). If  is a compact and convex and 𝐹 is a continuous function on , then variational inequality problem 𝑉 𝐼(𝐹 ,)
(13) admits at least a solution 𝑋∗.

Moreover, we have the following uniqueness result:

Theorem 4.4 (Uniqueness). Under the assumptions of Theorem 4.3, if the function 𝐹 (𝑋) in (13) is strictly monotone on , that is:

⟨(𝐹 (𝑋1) − 𝐹 (𝑋2))𝑇 , 𝑋1 −𝑋2⟩ > 0, ∀𝑋1, 𝑋2 ∈ , 𝑋1 ≠ 𝑋2,

then variational inequality (13) or, equivalently, variational inequality (14), admits a unique solution.

Theorem 4.5. Variational inequality problem (14) admits at least one solution.

Proof. As already discussed in the proof of Theorem 4.2, the function 𝑓 is continuously differentiable and convex. Therefore, the
function 𝐹 ≡ ∇𝑓 (𝑋) is continuous on K. Moreover, we observed that the feasible set K is convex and closed. Compactness follows
by observing that:

• all the variables are non-negative (see constraint (11));
• from constraint (2) we obtain that 𝛼𝑙𝑖 < +∞, ∀𝑖 = 1,… , 𝐼 + 1, ∀𝑙 = 1,… , 𝐿;
• from constraint (3), the previous deduction, and constraint (7) we obtain that 𝑥𝑙𝑖𝑗 < +∞, ∀𝑖 = 1,… , 𝐼 + 1, ∀𝑗 = 1,… , 𝐽 , ∀𝑙 =
1,… , 𝐿;

• from constraint (4) and the previous deduction we have that 𝑦𝑙𝑗𝑠 < +∞, ∀𝑗 = 1,… , 𝐽 , ∀𝑠 = 1,… , 𝑆, ∀𝑙 = 1,… , 𝐿;
• from constraint (4), the previous deductions, and constraint (6) it follows that 𝑧𝑙𝑗𝑘 < +∞, ∀𝑗 = 1,… , 𝐽 , ∀𝑘 = 1,… , 𝐾, ∀𝑙 =
1,… , 𝐿;

• from constraint (5) and the previous deductions, constraint (6), and constraints (8)–(10) we have that both 𝑤1𝑙
𝑠𝑘, 𝑤

2𝑙
𝑠𝑘 < +∞, ∀𝑠 =

1,… , 𝑆, ∀𝑘 = 1,… , 𝐾, ∀𝑙 = 1,… , 𝐿.

Therefore, the feasible set K is a closed and bounded set and, hence, we can affirm that the feasible set K is also a compact set. The
hypotheses of Theorem 4.3 are all satisfied and the thesis follows. □

5. Numerical simulations

In this section, we first illustrate the supply chain network topology and the parameters used for the numerical simulations. Then,
we detail the performed simulations and emphasize the advantages of using UAVs as revealed through the results. Furthermore, we
propose some additional configurations to show the potential of the mathematical model, which is able to capture some important
real-world aspects such as the limited drone capacity and battery duration. Finally, we provide results from a sensitivity analysis to
further emphasize the environmental impacts of drone usage.
8
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Fig. 2. Supply chain network topology for the numerical simulations.

.1. Simulation setting

The network topology of the considered supply chain is depicted in Fig. 2. The supply chain network consists of a company,
wo warehouses (a third-party seller’s warehouse and the company’s warehouse), one fulfillment center, two delivery stations and
hree customer locations. We take into account such a supply chain network, and consider a single product, in order to gain a better
nderstanding of the results obtained. Moreover, large geographical areas can be divided into smaller areas and associated supply
hain networks.

In the previous section, we assumed that all the cost functions are continuously differentiable and convex. Hence, we assume
hat the typical cost function 𝑐, depending on the variable (or variables vector) 𝑥, has the following general quadratic expression:

𝑐(𝑥) = 𝛽1 ⋅ 𝑥
2 + 𝛽2 ⋅ 𝑥, (16)

where 𝛽1 > 0 and 𝛽2 ≥ 0. The choice of such an expression and parameters is motivated by observing that all the assumptions are
erified and these functions are well-suited to reality. Specifically, it is clear that, since all the parameters are greater than or equal
o zero, the cost functions are always non-negative and are increasing functions. Moreover, by noting that 𝛽1 > 0, we can affirm
hat the costs are convex. Finally, since there is not a constant coefficient, when 𝑥 = 0, we obtain that 𝑐(0) = 0, in accordance with
eality.

Therefore, the handling cost of the company has the following expression:

𝑐(𝛼, 𝑥, 𝑦,𝑤1, 𝑤2) = 𝛽(ℎ𝑎𝑛)1 ⋅ (2𝛼, 𝑥, 𝑦,𝑤1, 𝑤2)2 + 𝛽(ℎ𝑎𝑛)2 ⋅ (2𝛼, 𝑥, 𝑦,𝑤1, 𝑤2),

here (2𝛼, 𝑥, 𝑦,𝑤1, 𝑤2) represents the sum of all variables, with a double weight for the variables 𝛼1 and 𝛼2 which we are assuming
to have a greater contribution to handling costs than the other variables.

In these simulations, we assume that the transportation costs from the fulfillment center to the delivery stations only depend on
the transported amount of the product (that is, 𝑦𝑗𝑠): 𝑐𝑗𝑠(𝑦𝑗𝑠, 𝑧𝑗 ) = 𝑐𝑗𝑠(𝑦𝑗𝑠). Analogously, we assume that 𝑐𝑗𝑘(𝑦𝑗 , 𝑧𝑗𝑘) = 𝑐𝑗𝑘(𝑧𝑗𝑘). On the
ther hand, the handling costs of 𝑊𝑖 for the trucks depend on 𝛼 and 𝑤2 as follows:

𝑐𝑡𝑟𝑖 (𝛼,𝑤
2) = 𝛽(𝑡𝑟)1 ⋅

(

𝛼1 + 𝛼2 − 𝜔

(

∑

𝑠,𝑘
𝑤2

𝑠𝑘

))2

+ 𝛽(𝑡𝑟)2 ⋅

(

𝛼1 + 𝛼2 − 𝜔

(

∑

𝑠,𝑘
𝑤2

𝑠𝑘

))

.

ndeed, the handling costs for the trucks take into account the transported quantities via trucks (through all the links of the network,
rom the first level to the last one), while the amount of products transported via UAVs must be subtracted (with a weight of 𝜔 = 0.5,
ecause it refers only to the last mile).

All other cost functions follow the generic expression described in (16). We emphasize that any type of expression that satisfies
he assumptions that the functions are continuously differentiable and convex could be used and it need not be of a quadratic form.

In Table 5, we report all the used 𝛽1 and 𝛽2 parameters, for each cost function. Note that we are assuming that there are no
inks between the fulfillment center 𝐺1 to the customer locations 𝐶1 and 𝐶3. Indeed, at the costs associated with the links from 𝐺1
o 𝐶 and 𝐶 , we set some very high values. We suppose, in contrast, that the second customer location, 𝐶 , is very close to the
9
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Table 5
Parameters of the cost functions numerical simulations.
Cost functions Description 𝛽1 𝛽2
𝑐(𝛼, 𝑥, 𝑦, 𝑧, 𝑤1 , 𝑤2) Handling 0.5 0.5

𝑐𝑖𝑗 (𝑥𝑖𝑗 )
Transp. from 𝑊1 to 𝐺1 0.2 0.2
Transp. from 𝑊2 to 𝐺1 0.1 0.1

𝑐𝑗𝑠(𝑦𝑗𝑠 , 𝑧𝑗 )
Transp. from 𝐺1 to 𝐷1 0.1 0.1
Transp. from 𝐺1 to 𝐷2 0.1 0.1

𝑐𝑗𝑘(𝑦𝑗 , 𝑧𝑗𝑘)
Transp. from 𝐺1 to 𝐶1 50 50
Transp. from 𝐺1 to 𝐶2 1 1
Transp. from 𝐺1 to 𝐶3 50 50

𝑐1𝑠𝑘(𝑤
1
𝑠𝑘)

Transp. from 𝐷1 to 𝐶1 (trucks) 2 2
Transp. from 𝐷1 to 𝐶2 (trucks) 8 8
Transp. from 𝐷1 to 𝐶3 (trucks) 8 8
Transp. from 𝐷2 to 𝐶1 (trucks) 8 8
Transp. from 𝐷2 to 𝐶2 (trucks) 9 9
Transp. from 𝐷2 to 𝐶3 (trucks) 2 2

𝑐2𝑠𝑘(𝑤
2
𝑠𝑘)

Transp. from 𝐷1 to 𝐶1 (UAVs) 1 1
Transp. from 𝐷1 to 𝐶2 (UAVs) 4 4
Transp. from 𝐷1 to 𝐶3 (UAVs) 4 4
Transp. from 𝐷2 to 𝐶1 (UAVs) 4 4
Transp. from 𝐷2 to 𝐶2 (UAVs) 4.5 4.5
Transp. from 𝐷2 to 𝐶3 (UAVs) 1 1

𝑐𝑡𝑟𝑖 (𝛼,𝑤
2) Trucks handling (∀𝑖 = 1, 2) 0.3 0.3

𝑐𝑑𝑟𝑠 (𝑤2) UAVs handling (∀𝑠 = 1, 2) 0.1 0.1

Table 6
Parameter values for numerical simulations.
Parameters Values

Purchase price 𝛾1 = 3
Production cost 𝛾2 = 4
Incentive for UAVs 𝐼𝑠𝑘 = 2, ∀𝑠 = 1, 2, ∀𝑘 = 1, 2, 3
Selling price from 𝐺𝑗 𝛾𝑗𝑘 = 149, ∀𝑗 = 1, ∀𝑘 = 1, 2, 3
Selling price from 𝐷𝑠 𝛾𝑠𝑘 = 150, ∀𝑠 = 1, 2, ∀𝑘 = 1, 2, 3
Maximum quantity at 𝑊1 𝑄1 = 20
Maximum quantity at 𝑊2 𝑄2 = 10
Demand from 𝐶𝑘 𝑟𝑘 = 10, ∀𝑘 = 1, 2, 3
Number of trucks at 𝑊1 𝑛𝑡𝑟1 = 4

Number of trucks at 𝑊2 𝑛𝑡𝑟2 = 5

Maximum capacity of trucks 𝑊 = 6
Number of UAVs at 𝐷1 𝑛𝑑𝑟1 = 5

Number of UAVs at 𝐷2 𝑛𝑑𝑟2 = 5
Maximum weight (UAV) 𝑝𝑑 = 4
Parameter on the weights 𝑃 𝑑𝑟 = 30
Parameter on distances 𝐵𝑑𝑟

𝑠𝑘 = 30, ∀𝑠 = 1, 2, ∀𝑘 = 1, 2, 3

fulfillment center. Furthermore, observe that the more expensive links are those of the last mile, between the delivery stations and
the customer locations. More specifically, we assume that the drones are cheaper than the trucks and that the trucks in the last mile
are the most expensive. These choices are motivated by reality. Moreover, we are assuming that the cheapest shipping method is
chosen; for example, Amazon could use its own trucks or those of third parties.

Table 6 displays all the values of the parameters used in the simulations. Observe that, as in reality, the maximum capacity
weight) of each truck is greater than that of each drone. We have that the selling price proposed by the fulfillment center is slightly
ower than the prices proposed by the delivery stations (but the fulfillment centers are usually more difficult to reach, because they
re further away). In these simulations, we are assuming that there are neither weight nor distance limitations; namely, the weight
f the product is less than the maximum weight that each drone is able to carry (𝑃 𝑑𝑟 = 30) and the distance between each delivery

station and each customer location is less than the distance allowed by the drone battery life (𝐵𝑑𝑟
𝑠𝑘 = 30, ∀𝑠 = 1, 2, ∀𝑘 = 1, 2, 3). In

the additional configurations (see Section 5.3) we modify these parameters.

5.2. Performed simulations and results

We perform two main numerical simulations, which focus on:

S1: a UAV-based last mile network; that is, a supply chain using UAVs for the last mile;
10
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Table 7
Optimal solutions of the simulations.
Variables Optimal solutions

S1 S2

𝛼𝑙∗
𝑖

𝑖 = 1 20 20
𝑖 = 2 10 10

𝑥𝑙∗𝑖𝑗
𝑖 = 1, 𝑗 = 1 20 20
𝑖 = 2, 𝑗 = 1 10 10

𝑦𝑙∗𝑗𝑠
𝑗 = 1, 𝑠 = 1 11.38 10
𝑗 = 1, 𝑠 = 2 11.21 10

𝑧𝑙∗𝑗𝑘

𝑗 = 1, 𝑘 = 1 0 0
𝑗 = 1, 𝑘 = 2 7.41 10
𝑗 = 1, 𝑘 = 3 0 0

𝑤1𝑙∗
𝑠𝑘

𝑠 = 1, 𝑘 = 1 0 0
𝑠 = 1, 𝑘 = 2 0 0
𝑠 = 1, 𝑘 = 3 0 10
𝑠 = 2, 𝑘 = 1 0 10
𝑠 = 2, 𝑘 = 2 0 0
𝑠 = 2, 𝑘 = 3 0 0

𝑤2𝑙∗
𝑠𝑘

𝑠 = 1, 𝑘 = 1 7.98 –
𝑠 = 1, 𝑘 = 2 1.39 –
𝑠 = 1, 𝑘 = 3 1.92 –
𝑠 = 2, 𝑘 = 1 1.93 –
𝑠 = 2, 𝑘 = 2 1.20 –
𝑠 = 2, 𝑘 = 3 7.99 –

Table 8
Contributions of the terms of the objective functions.
Terms of the S1 S2
objective function

−𝐶 (ℎ𝑎𝑛𝑑) −1023.7 −987
−𝐶𝑃𝑢𝑟𝑃 𝑟 −100 −100
−𝐶 (𝑊𝐺) −95 −95
−𝐶 (𝐺𝐷) −27.76 −22
−𝐶 (𝐺𝐶) −62.39 −110
−𝐶 (𝐷𝐶)

𝑡𝑟 0 −1760
−𝐶 (𝐷𝐶)

𝑑𝑟 −213.41 –
𝐼𝑆𝑀 44.79 –
−𝐶 (𝑡𝑟) −111.72 −279
−𝐶 (𝑑𝑟) −52.38 –
𝑇𝑅 4492.6 4490

𝑓 (𝛼∗ , 𝑥∗ , 𝑦∗ , 𝑧∗ , 𝑤1∗ , 𝑤2∗) 2850.6 1137

S2: a supply chain without using UAVs.

Therefore, we execute the simulations having the same supply chain network topology, functions and parameters as previously
escribed, and which differ only in the presence (S1) or absence (S2) of drones in the last mile.

The optimal results for both the simulations S1 and S2 are computed by solving the variational inequality given in the previous
ection via the Euler Method (see Dupuis and Nagurney (1993)). We implemented the algorithm in Matlab on an LG laptop with
12th Gen Intel(R) Core(TM) i7-1260P, 16 GB RAM. The optimal solutions are obtained in less than one second. Simulation S1

onsists of 21 variables, while S2 consists of 15 variables.
The optimal solutions are reported in Table 7.
The total objective function values for each simulation are:

𝑓 (𝑆1)(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗) = 2850.6;

𝑓 (𝑆2)(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗) = 1137.

In Table 8, we report the partial contribution of the terms of the objective functions.

5.2.1. Analysis of results
The optimal solutions of simulation S1 clearly show that 20 units of product (𝛼1∗1 = 20) are bought by Amazon (or a general

company) from a third-party seller, while 10 products are self-produced (𝛼1∗2 = 10). These quantities of products are sent from
the warehouses to the fulfillment center (𝑥1∗ = 20, 𝑥1∗ = 10), from which they are then distributed to both the delivery stations
11

11 21



Transportation Research Part C 155 (2023) 104316G. Colajanni et al.

t
a
v

(
b
i
t
t
t

s
c
f
s
r
t

t
s
o
U

5

t
i
t
c
l
a
d
a
t

Fig. 3. Optimal solutions: 𝛼𝑙∗
𝑖 , 𝑥𝑙∗𝑖𝑗 and 𝑦𝑙∗𝑗𝑠.

(𝑦1∗11 = 11.38 and 𝑦1∗12 = 11.21). Moreover, a certain amount of product (𝑧1∗12 = 7.41) is also directly sent from the fulfillment center to
he second customer location, 𝐶2 (the one near the fulfillment center). We highlight that from all the delivery stations no products
re sent to any customer location via trucks; indeed, we obtain that 𝑤11∗

𝑠𝑘 = 0, ∀𝑠 = 1, 2, ∀𝑘 = 1, 2, 3. Hence, all the products are sent
ia drones (𝑤21∗

𝑠𝑘 ⪈ 0, ∀𝑠 = 1, 2, ∀𝑘 = 1, 2, 3). Therefore, we can easily observe that using drones is more optimal than using trucks.
The obtained objective function to maximize clearly shows that the company earns a profit because it assumes a positive value

consisting of the difference between the overall revenue and the costs). Indeed, the positive terms are the total revenue (obtained
y the selling of products to the customers) and the incentive for sustainable mobility (that is, the use of UAVs, instead of trucks,
n order to reduce pollution and congestion), and these represent the greater part of the objective function. This aspect guarantees
hat the company obtains a profit in the selling of products. The handling cost is the term with the highest value. Among the
ransportation costs, the one from the delivery stations to the customer locations via drones is the greatest one, while, obviously,
he transportation cost via trucks (from each 𝐷𝑠 to each 𝐶𝑘) is null, because no trucks are used for the last mile. Note that, despite

no trucks being used in the last mile, there are still handling costs of trucks, since they are used in the higher levels of the supply
chain network.

The optimal solutions of the second simulation S2 show that 𝛼1∗1 = 20 units of product are bought by Amazon from a third-party
eller, while 𝛼1∗2 = 10 products are self-produced, and these quantities of products are sent from the warehouses to the fulfillment
enter (𝑥1∗11 = 20, 𝑥1∗21 = 10), as in the first simulation, S1. Unlike the first simulation, however, 𝑦1∗11 = 10 products are sent from the
ulfillment center 𝐺1 to the first delivery station 𝐷1; an equivalent amount of products (𝑦1∗12 = 10) is sent to the second delivery
tation 𝐷2 and directly to the second customer location 𝐶2 (𝑧𝑙∗𝑗𝑘 = 10). The first and third customer locations, instead, receive the
equested products from the second and first delivery stations, respectively (𝑤11∗

21 = 10 and 𝑤11∗
13 = 10), using the allowed means of

ransport, which is by truck.
Also, in this simulation, the company obtains a profit; indeed, the objective function (the difference between the revenues and

he costs) assumes a positive value (see Table 8). In contrast to the first simulation, in which drones can be used, in this second
imulation, where only trucks could be used, the most relevant objective function term is the one related to the transportation costs
f the last mile, from each delivery station to each customer location, via trucks. Obviously, there are no transportation costs via
AVs, nor incentives for sustainable mobility and handling costs of drones.

.2.2. Comparison of results
We now compare the results of the two simulations. By observing the obtained optimal solutions (see Table 7), we can affirm that

he solutions are very similar (see Fig. 3), except for the last mile shipments (see Fig. 4). Indeed, the means of transport allowed
n the last mile essentially represent the diversification between the two simulations. Specifically, in the first simulation, when
he model chooses the optimal means of transportation between trucks and drones, the drones are chosen, because they are more
onvenient. In contrast, in the second simulation, we assume that there are no drones, and, hence, only trucks can be used for the
ast mile. Furthermore, in S1, the demand at the first customer location is satisfied by the delivery stations (more from the first one),
s well as the demand at the third customer location (which is mostly satisfied by the second delivery station). On the contrary, the
emand at the second customer location is mainly (and directly) satisfied by the fulfillment center. In contrast, in S2, the demand
t the first customer location is satisfied by only the second delivery station; the demand at the second customer location by only
12

he fulfillment center, directly; and the third customer location by only the first delivery station.
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Fig. 4. Optimal solutions: 𝑧𝑙∗𝑗𝑘, 𝑤1𝑙∗
𝑠𝑘 and 𝑤2𝑙∗

𝑠𝑘 .

Fig. 5. Objective function terms: handling costs of the company (𝐶 (ℎ𝑎𝑛𝑑)), total expense for the purchase and the production cost (𝐶𝑃𝑢𝑟𝑃 𝑟), handling costs of all
trucks (𝐶 (𝑡𝑟)) and of all UAVs (𝐶 (𝑑𝑟)).

From Fig. 5 (and Table 8), we can observe that the handling costs of the company and the total expense for the purchase and
he production of products in S1 and S2 are comparable. In contrast, the handling costs of all trucks for the second simulation are
reater than those for the first one. The latter is motivated by the use of drones in the last mile for S1, which reduces the handling
osts of trucks. Clearly, in simulation S2, there are no handling costs of drones since no drones can be used.

If we pay attention to the transportation costs (see Fig. 6), we note that, in both the simulations, the highest ones are those related
o the last mile, as expected (since we are assuming that the last mile links are the most expensive). In particular, we observe that
he transportation cost from delivery stations to customer locations via trucks is null in S1 because the products are transported
ia drones, while they are very high in S2. Obviously, all the costs reported in Figs. 5 and 6 have a negative sign in the objective
unction.

Finally, from Fig. 7, we can see that only in the first simulation does the company receive the incentive for sustainable mobility
13

since the drones are used); the total revenues (due to the products selling) of the two simulations are comparable; the objective
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f

Fig. 6. Objective function terms: transportation costs from warehouses to the fulfillment center (𝐶𝑊𝐺), from the fulfillment center to delivery stations (𝐶𝐺𝐷),
rom the fulfillment center to customer locations (𝐶𝐺𝐶 ), from delivery stations to customer locations via trucks (𝐶𝐷𝐶

𝑡𝑟 ) and via UAVs (𝐶𝐷𝐶
𝑑𝑟 ).

Fig. 7. Objective function terms: incentive for sustainable mobility (𝐼 (𝑆𝑀)), total revenue (𝑇𝑅) and total objective function (𝑓 ).

function value of the first simulation is higher than that of the second simulation. Specifically, the difference between the two
objective function values is:

𝛥𝑓 = 𝑓 (𝑆1)(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗) − 𝑓 (𝑆2)(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗) = 2850.6 − 1137 = 1713.6. (17)

The positive value of the difference between the two objective functions, 𝛥𝑓 , in (17), means that the first simulation yields a greater
objective function value. Furthermore, if a company is evaluating whether to invest in UAVs or not, i.e., whether buying new drones
and using them for the last mile is advisable or not, it can use the proposed model, according to which if the investment for drones
is less than the value obtained by expression (17), then buying new drones is more suitable. Furthermore, we also calculate the
percentage convenience of using UAVs as follows:

𝑃𝐶 =
|

|

|

|

|

𝑓 (𝑆1)(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗) − 𝑓 (𝑆2)(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗)
𝑓 (𝑆1)(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗)

|

|

|

|

|

⋅ 100%

=
|

|

|

|

|

𝛥𝑓
𝑓 (𝑆1)(𝛼∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑤1∗, 𝑤2∗)

|

|

|

|

|

⋅ 100% =
|

|

|

|

|

1713.6
2850.6

|

|

|

|

|

⋅ 100% = 60.11%. (18)
14

Expression (18) means that using drones improves the company’s profit by more than 60%.
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Table 9
Main parameters of the additional configurations.
Simulations 𝑛𝑑𝑟1 𝑛𝑑𝑟2 𝑃 𝑑𝑟 𝐵𝑑𝑟

11 𝐵𝑑𝑟
12 𝐵𝑑𝑟

13 𝐵𝑑𝑟
21 𝐵𝑑𝑟

22 𝐵𝑑𝑟
23𝑘

S1.1 5 5 30 30 30 30 30 30 30
S1.2 5 5 30 0 30 0 30 0 0
S1.3 5 2 30 30 30 30 30 30 30
S1.4 4 2 30 0 30 30 30 0 30
S1.5 5 5 0 30 30 30 30 30 30
S1.6 5 5 0 0 0 0 0 0 0

We now investigate on the environmental benefits obtained using drones. More specifically, we analyze the CO2 emissions, or
he more general GHG emissions for the delivery activities, in simulations S1 and S2 and compare them. It is known (see, for
xample, Holden et al. (2016)) that the GHG emissions depend on the transported weight and volume of products (as well as the
umber of delivered products), on the type of used vehicles (that is, their sizes and their fuel factors) and on the travel distance. The
wo main equivalent approaches to the measure of GHG emissions from freight transport operations are based on energy consumption
nd on the level of transport activity, respectively (see McKinnon and Piecyk (2010), Duan et al. (2021), Goodchild et al. (2018)
nd Seo et al. (2016)). Therefore, we can estimate 𝐸, the total GHG emission CO2 equivalent emissions (expressed as grams), as
ollows:

𝐸 =
𝐾
∑

𝑘=1

[ 𝐽
∑

𝑗=1
𝐹 (𝐸)
𝑗𝑘 ⋅

( 𝐿
∑

𝑙=1
𝑝𝑙𝑧

𝑙∗
𝑗𝑘

)

⋅ 𝑑𝑗𝑘 +
𝑆
∑

𝑠=1
𝐹 (𝐸)
𝑠𝑘 ⋅

( 𝐿
∑

𝑙=1
𝑝𝑙𝑤

1𝑙∗
𝑠𝑘

)

⋅ 𝑑𝑠𝑘

]

, (19)

here, 𝐹 (𝐸)
𝑗𝑘 (expressed as grams of CO2𝑒 per kg-m: g/kg m) represents the emission factor for the link from node 𝑗 to node 𝑘 (which

epends on the type of used truck) and 𝑑𝑗𝑘 (m) is the distance between node 𝑗 and node 𝑘. Analogously, 𝐹 (𝐸)
𝑠𝑘 and 𝑑𝑠𝑘 are the

mission factor and the distance from 𝑠 to 𝑘, respectively (Anthes et al., 2022). Although the emission factor value is widely studied
y many researchers (Franco et al., 2013), it is not the focus here. Hence, for this purpose, we use the EcoTransit World Model
nline environmental assessment tool (see Dente and Tavasszy (2018) and Petro and Konečný (2017) for a detailed description of
he model and the calculator). By selecting the transport mode (truck) and vehicle type (size, fuel type, etc.), and inserting the
istance (the origin/destination coordinates) and the total amount of products (in kilograms) transported for each link (that is, our
ptimal solutions), we obtain that the total GHG emission of simulation S1 is 𝐸(𝑆1) = 3.2 g, while that of S2 is 𝐸(𝑆2) = 27.3 g.
bserve that in simulation S1 we have a little amount of emissions, since a percentage of product requested by 𝑘 = 2 is directly

atisfied from the fulfillment center, by trucks. In simulation S2, instead, we have a greater value of emissions, since all deliveries
re made by trucks. Therefore, we calculate that 24.1 g of GHG emissions might be eliminated through the use of drones yielding
reduction of 88.3 The results show that the use of UAVs can significantly minimize the transportation costs and can also reduce

he environmental emissions with incentives.
Therefore, the results show that the use of UAVs can significantly improve delivery efficiency and minimize the transportation

osts. We also highlight that using drones the environmental emissions are significantly reduced.

.3. Additional configurations

We also examined other configurations of the UAV-based last mile supply chain network (S1), as follows:

S1.1: with a large number of drones in each delivery station (𝑛𝑑𝑟𝑠 = 5, ∀𝑠 = 1, 2) and without weight and distance limitations
(𝑃 𝑑𝑟 = 30 and 𝐵𝑑𝑟

𝑠𝑘 = 30, ∀𝑠 = 1, 2, ∀𝑘 = 1, 2, 3);
S1.2: with a large number of drones in each delivery station (𝑛𝑑𝑟𝑠 = 5, ∀𝑠 = 1, 2) and without weight limitations (𝑃 𝑑𝑟 = 30) but with

some distance limitations (𝐵𝑑𝑟
12 = 𝐵𝑑𝑟

21 = 30, 𝐵𝑑𝑟
11 = 𝐵𝑑𝑟

13 = 𝐵𝑑𝑟
22 = 𝐵𝑑𝑟

23 = 0);
S1.3: without weight and distance limitations (𝑃 𝑑𝑟 = 30 and 𝐵𝑑𝑟

𝑠𝑘 = 30, ∀𝑠 = 1, 2, ∀𝑘 = 1, 2, 3) but with a limited number of drones
in some delivery stations (𝑛𝑑𝑟1 = 5, 𝑛𝑑𝑟2 = 2);

S1.4: with a limited number of drones in some delivery station (𝑛𝑑𝑟1 = 4, 𝑛𝑑𝑟2 = 2), without weight limitations (𝑃 𝑑𝑟 = 30) and with
some distance limitations (𝐵𝑑𝑟

12 = 𝐵𝑑𝑟
13 = 𝐵𝑑𝑟

21 = 𝐵𝑑𝑟
23 = 30, while 𝐵𝑑𝑟

11 = 𝐵𝑑𝑟
22 = 0);

S1.5: with a large number of drones in each delivery station (𝑛𝑑𝑟𝑠 = 5, ∀𝑠 = 1, 2), without distance limitations (𝐵𝑑𝑟
𝑠𝑘 = 30, ∀𝑠 =

1, 2, ∀𝑘 = 1, 2, 3), but with weight limitations (𝑃 𝑑𝑟 = 0);
S1.6: with a large number of drones in each delivery station (𝑛𝑑𝑟𝑠 = 5, ∀𝑠 = 1, 2), and with weight and distance limitations (𝑃 𝑑𝑟 = 0

and 𝐵𝑑𝑟
𝑠𝑘 = 0, ∀𝑠 = 1, 2, ∀𝑘 = 1, 2, 3).

e summarize the main parameters of these additional configurations in Table 9. For these new simulations, we assume that the
ransportation cost from the fulfillment center to the second customer location is the same as those to 𝐶1 and 𝐶3 (with 𝛽1 = 𝛽2 = 50;

that is, 𝐶2 is very far from 𝐺1). We also choose the following parameters for the transportation costs from 𝐷𝑠 to 𝐶𝑘, via trucks (see
Table 10). As described in the previous simulations, we set the parameters of the transportation costs from 𝐷𝑠 to 𝐶𝑘 via drones as
15

half of those shown in Table 10. All the other parameters are chosen as previously described in Section 5.1.
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Table 10
Parameters for the cost functions for the additional configurations.
Cost functions Description 𝛽1 = 𝛽2

𝑐1𝑠𝑘(𝑤
1
𝑠𝑘)

Transp. from 𝐷1 to 𝐶1 (trucks) 2
Transp. from 𝐷1 to 𝐶2 (trucks) 3
Transp. from 𝐷1 to 𝐶3 (trucks) 4
Transp. from 𝐷2 to 𝐶1 (trucks) 4
Transp. from 𝐷2 to 𝐶2 (trucks) 3
Transp. from 𝐷2 to 𝐶3 (trucks) 2

Table 11
Optimal solutions of the additional configurations.

S1.1 S1.2 S1.3 S1.4 S1.5 S1.6

𝛼∗
1 20.00 20.00 20.00 20.00 20.00 20.00

𝛼∗
2 10.00 10.00 10.00 10.00 10.00 10.00

𝑥∗11 20.00 20.00 20.00 20.00 20.00 20.00
𝑥∗21 10.00 10.00 10.00 10.00 10.00 10.00
𝑦∗11 15.00 14.38 20.05 18.26 15.00 15.00
𝑦∗12 15.00 15.62 9.95 11.74 15.00 15.00
𝑧∗11 0.00 0.00 0.00 0.00 0.00 0.00
𝑧∗12 0.00 0.00 0.00 0.00 0.00 0.00
𝑧∗13 0.00 0.00 0.00 0.00 0.00 0.00
𝑤1∗

11 0.00 1.82 0.33 3.20 6.83 6.83
𝑤1∗

12 0.00 0.66 0.28 0.71 5.00 5.00
𝑤1∗

13 0.00 3.19 0.08 0.24 3.17 3.17
𝑤1∗

21 0.00 0.63 0.17 1.51 3.17 3.17
𝑤1∗

22 0.00 0.62 0.62 0.92 5.00 5.00
𝑤1∗

23 0.00 6.81 1.16 1.30 6.83 6.83
𝑤2∗

11 6.62 0.00 8.15 0.00 0.00 0.00
𝑤2∗

12 5.00 8.72 6.41 8.37 0.00 0.00
𝑤2∗

13 3.38 0.00 4.80 5.75 0.00 0.00
𝑤2∗

21 3.38 7.56 1.35 5.29 0.00 0.00
𝑤2∗

22 5.00 0.00 2.69 0.00 0.00 0.00
𝑤2∗

23 6.62 0.00 3.96 2.71 0.00 0.00

The optimal solutions are reported in Table 11. Comparing the results of the six configurations, we can observe that the quantities
f products bought or produced by the company (𝛼∗𝑖 ) remain unchanged, as well as the quantities sent by the warehouses to the
ulfillment center (𝑥∗𝑖𝑗). For all the configurations, there is no product directly sent by the fulfillment center to the customer locations
𝑧∗𝑗𝑘 = 0, for 𝑗 = 1, ∀𝑘 = 1, 2, 3). This is motivated by the very large distance between 𝐺1 and 𝐶𝑘, ∀𝑘 = 1, 2, 3. In configuration S1.1

no trucks are used for the last mile because trucks are more expensive than drones.
In configuration S1.2, we are assuming that, due to the limited battery duration, a drone starting from the delivery station 𝐷1

cannot arrive (and come back) at the first and third customer locations and a drone starting from 𝐷2 cannot reach either 𝐶2 or 𝐶3.
Hence, UAVs are only used to transport products from 𝐷1 to 𝐶2 and from 𝐷2 to 𝐶1, while trucks are used for the other deliveries.

Configuration S1.3 is characterized by a lower number of drones in delivery station 𝐷2 (𝑛𝑑𝑟2 = 2), instead of 5 drones as used for
he previous configurations. The maximum amount of product that can be delivered via drones from a delivery station, 𝐷𝑠, is given
y 𝑛𝑑𝑟𝑠 ⋅ 𝑝𝑑 (see constraint (8)). The maximum amount of product that can be delivered from 𝐷2 is, thus, given by 𝑛𝑑𝑟2 ⋅ 𝑝𝑑 = 8 and it
s fully utilized; indeed, we have that 𝑤2∗

21 +𝑤2∗
22 +𝑤2∗

23 = 1.35+2.69+3.96 = 8.00. Observe that the product delivered in configuration
1.3 by the first delivery station is greater than those in configurations S1.1 and S1.2 (see the optimal variables 𝑦∗11 and 𝑤∗

1𝑘 in
able 11).

In configuration S1.4, we suppose both a lower number of drones in delivery stations (𝑛𝑑𝑟1 = 4 and 𝑛𝑑𝑟2 = 2) and the limitations
due to the battery duration (a drone cannot reach 𝐶1 from 𝐷1 and 𝐶2 from 𝐷2). Therefore, we find out that the products are mainly
delivered by the first delivery station, using drones, but also that trucks have to be used (because of the limited usage of UAVs).

Finally, observe that the optimal solutions of configurations S1.5 and S1.6 are the same. Indeed, both these configurations have
a weight limitation (𝑃 𝑑𝑟 = 0); that is, the weight of a unit of product is greater than the maximum weight that each drone is able
to carry. Therefore, since constraint (9) holds, whether there is a limitation due to battery or not, no drones can be used and only
trucks are allowed.

These results show that the proposed model can effectively take into account very important aspects, such as the number of
drones available, their capacity (the maximum weight they are able to carry, each drone individually and in total) and also the
maximum distance that each drone can travel (which is limited by its battery life).
16
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Table 12
Incentive value for each sensitivity analysis configuration.

SA1 SA2 SA3 SA4 SA5 SA6 SA7

𝐼𝑠𝑘 0 1 2 4 8 16 32

Table 13
Optimal solutions of the sensitivity analysis simulations.

SA1 SA2 SA3 SA4 SA5 SA6 SA7

𝛼∗
1 20.00 20.00 20.00 20.00 20.00 20.00 20.00

𝛼∗
2 10.00 10.00 10.00 10.00 10.00 10.00 10.00

𝑥∗11 20.00 20.00 20.00 20.00 20.00 20.00 20.00
𝑥∗21 10.00 10.00 10.00 10.00 10.00 10.00 10.00
𝑦∗11 13.57 13.61 13.83 14.10 14.82 15.26 15.26
𝑦∗12 16.43 16.39 16.17 15.90 15.18 14.74 14.74
𝑧∗11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
𝑧∗12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
𝑧∗13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
𝑤1∗

11 1.95 1.76 1.55 0.00 0.00 0.00 0.00
𝑤1∗

12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
𝑤1∗

13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
𝑤1∗

21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
𝑤1∗

22 10.00 9.94 9.61 8.66 7.09 0.00 0.00
𝑤1∗

23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
𝑤2∗

11 8.05 8.24 8.45 9.31 8.97 8.04 8.04
𝑤2∗

12 0.00 0.06 0.39 1.34 2.91 5.30 5.30
𝑤2∗

13 3.57 3.54 3.44 3.45 2.94 1.93 1.93
𝑤2∗

21 0.00 0.00 0.00 0.69 1.03 1.96 1.96
𝑤2∗

22 0.00 0.00 0.00 0.00 0.00 4.70 4.70
𝑤2∗

23 6.43 6.46 6.56 6.55 7.06 8.07 8.07

5.4. Sensitivity analysis on the incentive values

We now provide a sensitivity analysis on the incentive values, 𝐼𝑠𝑘, for using UAVs to reduce pollution and congestion on the
inks between each delivery station, 𝐷𝑠, and each customer location, 𝐶𝑘, ∀𝑠 = 1,… , 𝑆 and ∀𝑘 = 1,… , 𝐾. Clearly, by varying the

values of these parameters, the term of the objective function related to the incentive for sustainable mobility, 𝐼𝑆𝑀 , undergoes a
modification and, therefore, the optimal solutions can change.

We test seven different new simulations (SA1, SA2, SA3, SA4, SA5, SA6 and SA7), varying the incentive values, 𝐼𝑠𝑘, ∀𝑠 = 1, 2, ∀𝑘 =
1, 2, 3, in an increasing manner, as shown in Table 12.

All the other parameters are set as shown in Section 5.1, that is, as in simulation S1, and with no direct links between the
fulfillment center and the customer locations.

The optimal solutions for each sensitivity analysis configuration are reported in Table 13. We observe that the quantities of
product bought and produced (𝛼∗𝑖 , ∀𝑖 = 1, 2) and the quantities of product sent from the warehouses to the fulfillment center (𝑥∗𝑖𝑗 ,
∀𝑖 = 1, 2, 𝑗 = 1) are the same in all the simulations. The optimal quantities sent by the fulfillment center to the delivery stations
(𝑦∗𝑗𝑠, ∀𝑗 = 1, ∀𝑠 = 1, 2) are comparable. In terms of greater detail, we note that the quantity sent to the first delivery station varies
increasingly; in contrast, the one sent to the second delivery station varies decreasingly. No products are directly sent from the
fulfillment center to the customer locations (𝑧∗𝑗𝑘 = 0, ∀𝑗 = 1, ∀𝑘 = 1, 2, 3), since we are assuming a very high cost for these links.

The main differences among the different sensitivity analysis simulations lie in the optimal quantities of product sent via trucks
or drones in the last mile (that is, from the delivery stations to the customer locations). Specifically, trucks are used from the 𝐷1
to 𝐶1 only when the unit incentive for using drones is less than or equal to 2 (𝐼11 ≤ 2). While trucks are used from the 𝐷2 to 𝐶2
only when the unit incentive for using drones is less than or equal to 8 (𝐼22 ≤ 8). Therefore, we see that the demand at the first
ustomer location is satisfied only by drones, if the incentive for using UAVs is greater than or equal to 4; otherwise, trucks are
sed. Moreover, the demand at the second customer location is satisfied only by drones, if the incentive for using UAVs is greater
han or equal to 16. And, the requests from the third customer locations are always satisfied by UAVs.

We denote by

𝑊 (𝑡𝑟) =
∑

𝑠=1,2
𝑘=1,2,3

𝑤1∗
𝑠𝑘 and 𝑊 (𝑑𝑟) =

∑

𝑠=1,2
𝑘=1,2,3

𝑤2∗
𝑠𝑘 ,

the total amount of product sent via trucks and that sent via drones, respectively.
17
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Table 14
Sensitivity analysis: amount of product sent via trucks (𝑊 (𝑡𝑟)) and via drones (𝑊 (𝑑𝑟)) and incentive for sustainable mobility
(𝐼 (𝑆𝑀)).

SA1 SA2 SA3 SA4 SA5 SA6 SA7

𝐼𝑠𝑘 0 1 2 4 8 16 32

𝑊 (𝑡𝑟) 11.95 11.70 11.16 8.66 7.09 0.00 0.00
𝑊 (𝑑𝑟) 18.05 18.30 18.84 21.34 22.91 30.00 30.00
𝐼 (𝑆𝑀) 0.00 18.30 37.68 85.34 183.25 480.00 960.00

Fig. 8. Total amount of product sent via trucks (𝑊 (𝑡𝑟)) and via drones (𝑊 (𝑑𝑟)) in the sensitivity analysis simulations.

In order to analyze in detail the amount of product sent via trucks, 𝑊 (𝑡𝑟), and that sent via drones, 𝑊 (𝑑𝑟), and the incentive for
sustainable mobility, 𝐼 (𝑆𝑀), for each simulation, we report them in Table 14.

Fig. 8 shows the amounts of product sent via trucks (see the blue bars) and via drones (see the red bars), for each simulation. It
is clear that, by increasing the incentive for using UAVs, the amount of product transported via trucks decreases, while that shipped
via drones increases. In particular, observe that varying the unit incentive (𝐼𝑠𝑘, ∀𝑠, 𝑘) from 8 to 16, we obtain that an amount of
7.09 (previously transported via trucks) is now delivered via drones, and that the total incentive for sustainable mobility, 𝐼 (𝑆𝑀),
increases by 296.75 (see Table 14, columns SA5 and SA6). Increasing the unit incentive from 16 to 32 (see Table 14, columns
SA6 and SA7), we have a higher incentive for sustainable mobility (which differs by 480.00), but we obtain no difference in the
distribution of products via trucks and drones. Indeed, no trucks are used in both the two simulations. Hence, we can conclude that
the National Institution that disburses incentives for reducing pollution and congestion, in this case, has no advantage in increasing
the incentives from 16 to 32, while it would get positive environmental impacts in varying the incentives from 8 to 16.

The results show how the choice of incentives can impact on environmental aspects (such as congestion and pollution), since
companies could change their decision-making strategies, distributing more products via drones.

6. Conclusions and suggestions for future research

UAVs have become increasingly popular in recent years, with their usage ranging from military operations to commercial
applications such as aerial photography, mapping, and package delivery. With advancements in technology, drones have become
more sophisticated and capable of performing a wide range of tasks. However, one of the main challenges facing drone technology
is their optimal management in supply chain networks for product delivery. Flow optimization is a critical aspect of supply chain
management, as it plays a crucial role in improving the efficiency and effectiveness of the whole delivery process. It involves finding
the best possible solution to a given problem, such as the optimal quantities of products a company has to buy from third party
sellers, produce itself, sell and deliver via trucks and/or drones. UAVs usage can help to reduce the time, energy and resources
required for delivery operations, making them more cost-effective and environmentally sustainable. Therefore, the implementation
of drones in the last mile of a supply chain network can result in significant optimization benefits. By utilizing drones for last mile
deliveries, companies can reduce delivery times, increase delivery efficiency and reduce costs associated with traditional delivery
methods.

This research paper has explored the use of drones for the last mile in the framework of optimizing a supply chain network. The
proposed nonlinear optimization model is able to take into account some important key features such as the number of drones which
18

are available, their maximum capacity (that is, the maximum weight they are able to carry, each drone individually and in total)
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and the maximum distance that each drone can reach (which is mostly conditioned by its limited battery duration). Furthermore,
the study has shown that the use of drones can significantly reduce the delivery cost of the supply chain. Indeed, the analysis of
numerical simulations has demonstrated that implementing a drone delivery system can reduce the cost by up to 60%. A sensitivity
analysis on incentive values is also provided to highlight their impact on optimal solutions, and, hence, on environmental aspects.

However, despite the potential benefits of drone delivery, there are also several challenges that must be addressed. These
hallenges include regulatory issues. There are some restrictions and constraints to which the use of UAVs is subject, especially
n urban areas; there are also technological limitations, delivery area issues and public acceptance. Therefore, it is crucial that
ompanies work closely with researchers, regulators and the public to develop, investigate and implement drone delivery solutions
hat are safe, reliable and accepted by all stakeholders. In our further research, we aim to introduce infrastructures that support
rone delivery, such as green charging stations and landing pads, as well as the use of renewable energy and collection points
n the supply chain. Collection points could be modeled as two different location types: the locker locations and the hub pick-up
oint locations. The first are locations where parcel lockers (an automated postal box that allows users to self-collect parcels) are
ositioned. External parcel lockers could be used at any time (in three days, when the customer receives his code to open the
ocker), but they have limited dimensions. Hence, the hub pick-up points, where there are no dimension limits, could be used, but
nly during some allowed delivery time windows. The optimal locations, sizing and numbers, as well as the reverse chain to return
tems (distinguishing the collection points where packaging is also carried out or not) could be analyzed.

Overall, our research suggests that the optimization of supply chains with drones in the last mile can result in significant benefits
or companies. As such, we recommend that companies continue to explore the potential of drone delivery as a means of improving
heir supply chain operations, reducing their costs, as well as pollution and congestion (from which consumers and society, as a
hole, will obtain benefits). In conclusion, the findings of this research suggest that the use of drones in the last mile of a supply chain
etwork can be an effective and efficient solution for businesses to improve their delivery operations and reduce the environmental
missions.

Another challenge in last mile delivery, which could be addressed in a future work, is ensuring timely delivery. Customers expect
heir orders to be delivered within a specific timeframe, and delays or missed deliveries can lead to customer dissatisfaction and lost
usiness. Delivery companies are under pressure to meet these expectations while also managing the complexity of last mile logistics,
ncluding traffic congestion, unexpected road closures, and other unforeseen events. To address these challenges, delivery companies
re using a range of technologies and strategies to improve the timeliness of deliveries, but they are also investing in new delivery
odels that can help improve the timeliness of deliveries. For example, some companies are experimenting with crowdsourcing
elivery, where independent contractors or gig workers deliver packages using their own vehicles. Such a model can be particularly
ffective in urban areas where traffic congestion may slow down traditional delivery vehicles.
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