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Abstract: Hundreds of millions of people are now facing food insecurity as challenges from

climate change, the aftereffects of the COVID-19 pandemic, and strife and conflicts make

availability of food at reasonable prices challenging. International trade has enabled the

reallocation of agricultural products, essential for nutrition, from countries with supply mar-

kets to other points of demand and has been the subject of an increasing number of policy

interventions by governments. In this paper, a multicommodity international trade net-

work equilibrium model is constructed with the inclusion of nutritional minimal standards

to support food security, accompanied by consumer subsidies, for which explicit formulae are

provided. The theoretical and computational framework is based on variational inequalities.

Numerical examples focusing on Ukraine and MENA (Middle Eastern and North African)

countries and on a staple commodity of wheat demonstrate the modeling and policy frame-

work.
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1. Introduction

The 1996 World Food Summit defined food security as existing when “all people, at all

times, have physical, social and economic access to sufficient, safe and nutritious food to

meet dietary needs for a productive and healthy life” (World Food Summit (1996)). Hence,

adequate nutrition is not only essential to the health and well-being of people around the

globe but is also critical for food security. With shocks of climate change, the COVID-19

pandemic, strife, unrest, and wars, along with their negative ramifications and disruptions,

hunger and food insecurity are rising globally on our planet. According to the World Food

Programme (2023), based on available data, more than 345 million people in 2023 are faced

with high levels of food insecurity, a number more than twice the number in 2020. The

Food and Agricultural Organization (2023) of the United Nation estimates that between

691 and 783 million people faced hunger in 2022. Furthermore, the Food and Agricultural

Organization (2021) reports that the prevalence of undernourishment (PoU) increased to

about 9.9% in 2020, from 8.4% a year earlier, after being essentially unchanged from 2014

to 2019, and noted that the world is at a “critical juncture.” The UN’s second Sustainable

Development Goal (SDG) aims for zero hunger and the achievement of food security and

improved nutrition (United Nations (2023)).

Since agricultural products in the form of grains, fruits and vegetables, as well as dairy

and meat products, can be important components of nutritious diets, their availability and

affordability help to support food security. For example, according to the Food and Agri-

cultural Organization (2016), the commodities of wheat, maize, and rice are foundational

staple crops of global trade, and of high importance for food security. They comprise 43% of

calories and 37% of protein consumed by humans. In countries with insufficient resources to

produce the required volumes of commodities for nutritional minimum requirements locally,

international trade of agricultural products can provide the necessary commodities through

networks from points of production to points of demand and consumption. According to

Zimmerman and Rapsomanikis (2023), over the past three decades, agricultural and food

trade has increased more than twice in value, quantity, and calories. Furthermore, they argue

that trade is essential to ensure food security in multiple dimensions stating that the avail-

ability and accessibility of foods and, hence, nutrients, would be more unevenly distributed

without trade and more sensitive to any form of food disruptions domestically.

It is, therefore, understandable that agricultural trade has been the subject of multi-

ple policy interventions by governments. Policy interventions well-known in this important

economic sector include: tariffs, quotas, tariff-rate quotas (TRQs), and even subsidies. As

discussed in Nagurney, Besik, and Nagurney (2019) regarding the relevance of trade policies
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in practice, the Uruguay Round in 1996 created more than 1,300 new TRQs and they are

widely applied especially in agricultural trade for such products as: milk and dairy prod-

ucts, bananas, sugar, beef, eggs, poultry, potatoes, among other food products. The four

most important food crops: wheat, corn, rice, and bananas have had this policy applied to

them. According to Casey and Cimino-Isaacs (2021), between January 2020 and April 2021,

countries took more than 220 actions banning or limiting the export of certain products for

COVID-19-related reasons, with the products covered by these export curbs falling into two

categories: medical items including pharmaceuticals and foodstuffs. For example, according

to Reuters (2020), Egypt banned the export of legumes for three months during this period

and both Vietnam and Cambodia as well as India instituted export controls on rice. India,

the world’s largest rice exporter, on July 20, 2023, due to heavy rains destroying paddy fields,

banned the export of non-basmati white rice to “ensure adequate domestic availability at

reasonable prices” (The Economist (2023)).

Subsidies for farmers have been applied in both developed and developing countries and

have a long history. In the United States, according to O’Neill Hayes and Kerska (2023),

subsidies for farmers by the federal government have averaged $16 billion annually over

the past decade. The Common Agricultural Policy (CAP), dating to the 1960s, provides

subsidies to farmers in the European Union and is the EU’s largest budget item, averaging

54 billion euros per year (Nicholas and Brady (2020)). China, in 2021, announced that it

would give out 20 billion yuan ($3.1 billion) in subsidies to grain farmers because of high

fertilizer and diesel costs, with the goal of moderating the impact of rising commodity prices

(Hua and Yao (2021)). And Russia’s war on Ukraine, following the full-scale invasion of

February 24, 2022, is reshaping the CAP for multiple members of the European Union (see

Euroactive (2022)).

A major study by An (2013) that systematically reviewed evidence from field interven-

tions on the effectiveness of monetary subsidies for consumers in promoting healthier food

purchases and consumption revealed that subsidizing healthier foods tended to be effective

in changing dietary behavior. World events, including Russia’s war on Ukraine, are gener-

ating increased anxiety for certain governments. Barnes (2023) reports that Egypt depends

on imported wheat, and, in recent years, the majority of wheat imports have come from

Russia and Ukraine with the imported grain providing 50% of the flour for the subsidized

bread program that about 72 million Egyptians depend on for their daily consumption.

Van Berkum (2021), however, in an expansive study on trade, associated policies, and the

food system, has noted that trade rules do not, typically, include goals for the provision of

healthy diets. Furthermore, he recognizes that enhancing the nutritional impacts of food
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systems is a principal objective of “food system transformation.” In this paper, we take on

the challenge of quantifying subsidies for consumers in the context of international trade of

agricultural products for the achievement of nutritional minimum standards, including calo-

ries and nutrients. Specifically, in this paper, a new international trade network equilibrium

model is constructed consisting of multiple, spatially separated countries involved in the

production and consumption of multiple commodities. Associated with each nutrient is a

minimum amount required by the population in each country, with each commodity having

its composition of nutrients and caloric content.

2. Literature Review, Contributions, and Organization of the Paper

Subsection 2.1 provides the literature review of the relevant papers, whereas Subsection

2.2 highlights the contributions in this paper, and Subsection 2.3 describes how this paper

is organized.

2.1 Literature Review

The research in this paper builds on the work on spatial price equilibrium modeling (see

Samuelson (1952), Takayama and Judge (1964, 1971)) but utilizing the theory of variational

inequalities (cf. Florian and Los (1982), Dafermos and Nagurney (1984), Nagurney and

Aronson (1989), Nagurney (1999)), with specific note on policies (Nagurney, Thore, and

Pan (1996), Nagurney, Nicholson, and Bishop (1996), Nagurney, Li, and Nagurney (2014),

Nagurney, Besik, and Dong (2019), Nagurney, Salarpour, and Dong (2022), Nagurney et

al. (2023)). Spatial price equilibrium models have had wide applications to agricultural

commodities and, therefore, this foundational framework is a reasonable one in which to

also incorporate minimum nutritional standards for consumers in different countries. For

example, as summarized by Nagurney, Li, and Nagurney (2014), spatial price equilibrium

models have been applied in the agricultural sector by Thompson (1989); specifically, to

eggs by Judge (1956), to potatoes by Howard (1984), to beef by Sohn (1970), and to cereal

grains by Ruijs et al. (2001) and Nagurney et al. (2023). Spatial price equilibrium models

have also been applied to the important agricultural commodity of soybeans by Barraza

De La Cruz, Pizzolato, and Barrazade La Cruz (2010), and to dairy by Bishop, Pratt, and

Novakovic (1994) and by Nagurney, Besik, and Dong (2019). Spatial equilibrium models have

also been applied to energy markets. For a recent such paper that includes transportation

capacities and impacts, see Birge et al. (2022).

The achievement of nutritional goals has, in addition, been the target of various studies

in operations research. In fact, what is known as “The Diet Problem,” has a long history
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dating to World War II, with luminaries such as Stigler and Dantzig making significant con-

tributions and with Linear Programming being a fundamental tool for formulation, analysis,

and solution. See van Dooren (2018) for a review. Agriculture has also been a topic of great

interest to operations researchers with the recent special issue of the International Trans-

actions in Operational Research on OR and big data in agriculture edited by Albornoz et

al. (2023) demonstrating the breadth and depth of issues as well as applications. Relevant

references on operations research and agriculture include the earlier works of Weintraub and

Romero (2006) and Pla, Sanders, and Higgins (2014). Food security has also drawn the

attention of operations researchers; see Schweigman (2008) for an overview of food security

studies and potential in several countries in Africa.

2.2 Contributions

This is the first work that integrates spatial price equilibrium modeling and minimum

nutritional standards, coupled with consumer subsidies in an international trade context.

In particular, the results in this paper include formulae for the consumer subsidies that

guarantee that minimum nutritional standards are met and, thus, are supportive of food se-

curity. The derived equilibrium conditions are novel and consist of the multicommodity trade

flows and the Lagrange multipliers (shadow prices) associated with the nutrient minimum

standards. The equilibrium conditions are formulated as alternative variational inequalities

and qualitative properties of existence and uniqueness discussed. Illustrative examples are

presented, followed by an algorithmic scheme, with nice features for implementation. The

algorithm is applied to compute the equilibrium solutions in a series of numerical examples

focusing on the commodity of wheat and on the countries of Ukraine, Egypt, and Lebanon.

The paper adds to the literature on the incorporation of trade policies in computable

network equilibrium models for international trade to quantify and assess the impacts on

volumes of commodities as well as prices. The model in this paper, for the first time,

combines international trade, multiple commodities, and nutritional minimum standards in

a general network equilibrium framework in which consumer subsidies are also quantified via

explicit formulae with a goal of achieving food security.

2.3 Organization of the Paper

The paper is organized as follows. In addition to Sections 1 and 2 above, in Section 3,

the international trade model with consumer subsidies for food security is constructed, the

necessary notation provided, and the bipartite network underlying the problem depicted.

The model can handle nonlinear and asymmetric multicommodity supply price functions,
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unit transportation cost functions, as well as demand price functions. The equilibrium

conditions expand upon spatial price equilibrium conditions to include minimum nutritional

standards based on the populations in the countries and the nutrient composition of the

agricultural commodities. Alternative variational inequality formulations of the governing

equilibrium conditions are also derived. Drawing upon the equilibrium conditions which

include both multicommodity trade flows as well as Lagrange multipliers associated with

the minimum nutritional amounts, explicit formulae for consumer subsidies are provided to

support food security. Illustrative examples are solved analytically in order to illustrate the

framework. Results for existence and uniqueness of a multicommodity equilibrium trade

flow pattern are also given. Section 4 then describes an algorithm that, when applied to

the variational inequality in multicommodity trade flows and Lagrange multipliers, results

in closed form expressions for these variables at each iteration. Conditions for convergence

are also provided. The algorithm is then applied in Section 5 to solve numerical examples

focused on the commodity of wheat and the countries of Ukraine, Egypt, and Lebanon under

different scenarios. Section 6 summarizes the results and presents the conclusions.
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Figure 1: The International Trade Network

3. The International Trade Model with Consumer Subsidies for Food Security

The international trade model with consumer subsidies (if needed) for food security con-

sists of n country supply markets and n country demand markets. The supply markets

and the demand markets are involved in the production and consumption, repectively, of H

commodities with a typical commodity denoted by h. A typical country supply market is

denoted by i and a typical country demand market by j. The underlying structure of the

model can be represented as a bipartite network as illustrated in Figure 1.

The country supply and demand markets are spatially separated and, hence, there is

a unit transportation cost associated with each commodity between supply and demand

markets. Associated with each country supply market and commodity is a supply price

function and with each country demand market and commodity a demand price function.

The focus in this paper is on food security and that entails that the population(s) receive

the necessary nutrients, which also means that caloric needs are achieved. A representative

human is considered here for the nutritional requirements. In the model a typical nutrient is

denoted by l, with there being L nutrients. The notation for the parameters in the model,

and that for the variables and the functions is given in Table 1. All vectors are column

vectors.
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Table 1: Notation for the International Trade Network Model for Food Security

Notation Parameter Definition
tlj the minimum amount required of nutrient l; l = 1, . . . , L, for the popu-

lation in country demand market j; i = 1, . . . , n.
αl,h the amount of nutrient l; l = 1, . . . , L, in a unit of commodity h;h =

1, . . . , H.
Notation Variable Definition

shi the supply of commodity h; h = 1, . . . , H, at country supply market
i; i = 1, . . . , n. We group all the commodity supplies into the vector
s ∈ RHn

+ .
dhj the demand for commodity h; h = 1, . . . , H, at country demand market

j; j = 1, . . . , n. We group all the commodity demands into the vector
d ∈ RHn

+ .
Qh

ij the shipment of commodity h; h = 1, . . . , H, from country supply market
i; i = 1, . . . , n, to country demand market j; j = 1, . . . , n. We group all
the commodity shipments into the vector Q ∈ RH2n

+ .
λl
j the Lagrange multiplier (shadow price) associated with the minimum

requirement of nutrient l in country demand market j, with l = 1, . . . , L
and j = 1, . . . , n. We group all such Lagrange multipliers into the vector
λ ∈ RLn

+ .
Notation Function Definition

πh
i (s) the supply price function for commodity h; h = 1, . . . , H, at country

supply market i; i = 1, . . . , n. We group all the commodity supply price
functions into the vector π(s) ∈ RHn.

ρhj (d) the demand price function for commodity h; h = 1, . . . , H, at country
demand market j; j = 1, . . . , n. We group all the commodity demand
price functions into the vector ρ(d) ∈ RHn.

chij(Q) the unit transportation cost associated with shipping commodity h; h =
1, . . . , H, from country supply market i; i = 1, . . . , n, to country demand
market j; i = 1, . . . , n. We group the commodity unit transportation
costs for all supply/demand market pairs into the vector c(Q) ∈ RH2n.
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The Conservation of Flow Equations

The supply, demand, and nonnegativity constraints are now presented. The conservation

of flow equations are as follows:

shi =
n∑

j=1

Qh
ij, h = 1, . . . , H; i = 1, . . . , n; (1)

dhj =
n∑

i=1

Qh
ij, h = 1, . . . , H; j = 1, . . . , n; (2)

Qh
ij ≥ 0, h = 1, . . . , H; i = 1, . . . , n; j = 1, . . . , n. (3)

Equation (1) states that the amount of each commodity produced at a country supply

market is equal to the sum of the shipments of the commodity out of the country supply

market to all the country demand markets. Equation (2), on the other hand, states that the

amount of the commodity consumed at a country demand market equals the amount of the

commodity transported to it from all the country supply markets. Equation (3) guarantees

that the commodity shipments are all nonnegative

The commodity supply price, demand price, and unit transportation cost functions are

assumed to be continuous. All the functions are in a common currency; typically, in US dol-

lars. While the commodity supply price functions and the unit transportation cost functions

are monotone increasing, the commodity demand price functions are monotonically decreas-

ing (cf. Nagurney (1999)). Note that according to these functions, as delineated in Table

1, the supply price of a commodity at a country supply market can, in general, depend not

only on the supply of the commodity at the country supply market but also on the supplies

of the other commodities, as well as on the supplies of the commodities at other country

supply markets. A similar level of generality is possible for the demand price functions but in

terms of country demand markets and also for the commodity transportation costs with the

latter functions also, in general, depending not only on the particular commodity shipment

between a pair of country supply and demand markets. The generality of these functions

allows one to capture different levels of competition.

The Food Security Nutritional Constraints

The food security nutritional constraints guarantee that the nutritional needs are met for

each country’s population and are as follows

H∑
h=1

αl,hdhj ≥ tlj, l = 1, . . . , L; j = 1, . . . , n. (4a)
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In view of (2), we may rewrite the constraints in (4a) as:

H∑
h=1

αl,h

n∑
i=1

Qh
ij ≥ tlj, l = 1, . . . , L; j = 1, . . . , n. (4b)

According to (4a) (and also (4b)), the minimum amount needed for nutrition from each

nutrient (including calories) derived from all the commodities for the population in each

country must be met. We refer to the tljs as the minimum standards for nutrient l in country

demand market j.

In the statement of the international trade equilibrium conditions, we associate a Lagrange

multiplier λl
j with the constraint in (4b) corresponding to nutrient l and country demand

market j.

New multicommodity supply price functions π̃h
i (Q) for h = 1, . . . , H; i = 1, . . . , n, and

new demand price functions ρ̃hj (Q) for h = 1, . . . , H; j = 1, . . . , n, that are functions of

the commodity shipments are now defined. This is doable because of conservation of flow

equations (1) and (2). Hence, we have that:

π̃h
i = π̃h

i (Q) ≡ πh
i (s), h = 1, . . . , H; i = 1, . . . , n, (5)

and

ρ̃hj = ρ̃hj (Q) ≡ ρhj (d), h = 1, . . . , H; j = 1, . . . , n. (6)

The feasible set K1 ≡ {(Q, λ)|(Q, λ) ∈ RH2n+Ln
+ }.

3.1 The International Trade Equilibrium Conditions with Food Security Mini-

mum Standards and Variational Inequality Formulations

The international trade equilibrium conditions with food security nutritional minimum

standards are presented in this Subsection. The variational inequality formulation of the

governing equilibrium conditions is then derived and an alternative variational inequality

formulation provided. Conditions for existence and uniqueness of a solution are also given.

In the absence of the minimum nutritional standards that must be met, the model collapses

to a multicommodity spatial price equilibrium model. The equilibrium conditions below

expand the classical spatial price equilibrium conditions of Samuelson (1952) and Takayama

and Judge (1971) to include food security in the form of minimum nutritional standards.

The spatial price equilibrium framework, in a variational inequality context (cf. Florian

and Los (1982), Dafermos and Nagurney (1984)), has yielded rich modeling advances and

applications, especially to agricultural products (see, e.g., Nagurney and Aronson (1989),
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Nagurney, Dong, and Nagurney (2014), Nagurney (2021), Nagurney, Salarpour, and Dong

(2022), Nagurney and Besik (2022), Nagurney et al. (2023)).

Definition 1: The International Trade Equilibrium Conditions with Food Secu-

rity Nutritional Minimum Standards

A multicommodity shipment and Lagrange multiplier pattern (Q∗, λ∗) ∈ K1 is an interna-

tional trade equilibrium with food security nutritional minimum standards if it satisfies the

following conditions: for each commodity h; h = 1, . . . , H, and for each pair of country

supply and demand markets (i, j); i = 1, . . . , n; j = 1, . . . , n:

π̃h
i (Q

∗) + chij(Q
∗)−

L∑
l=1

αl,hλl∗
j

{
= ρ̃hj (Q

∗), if Qh∗
ij > 0,

≥ ρ̃hj (Q
∗), if Qh∗

ij = 0,
(7)

and for each nutrient l; l = 1, . . . , L, and for each country demand market j; j = 1, . . . , n:

H∑
h=1

αl,h

n∑
i=1

Qh∗
ij − tlj

{
= 0, if λl∗

j > 0,
≥ 0, if λl∗

j = 0.
(8)

According to the above equilibrium conditions, if the minimum nutritional target is ex-

ceeded for a nutrient in a country demand market, there is a positive shipment of the

commodity between a pair of country supply and demand markets if the supply price of

the commodity at the country supply market plus the unit transportation cost associated

with shipping the commodity is equal to the demand price of the commodity at the country

demand market. There will not be a positive shipment of the commodity in equilibrium

between the pair of supply and demand markets if the supply price plus the unit trans-

portation cost exceeds the demand price. On the other hand, if the Lagrange multiplier

associated with a country demand market and nutrient is positive in equilibrium and the

commodity shipment is positive, then the demand price for the commodity at the country

demand market will be lower than the respective supply price plus the unit transportation

cost. The amount by which it is lower is equal to the value of the contribution by the com-

modity to achieving the nutrient targets at the country demand market, which is quantified

by
∑L

l=1 α
l,hλl∗

j for commodity h and country demand market j. Subsequently, we will show

that this term is precisely the consumer subsidy that should be applied to guarantee that

the nutritional needs for country demand market j are met for nutrient l.

The variational inequality formulation of the above governing equilibrium conditions is

now established
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Theorem 1: Variational Inequality Formulation of the International Trade Equi-

librium Conditions with Food Security Minimum Nutritional Standards

A multicommodity shipment and Lagrange multiplier pattern (Q∗, λ∗) ∈ K1 is an inter-

national trade equilibrium with food security minimum nutritional standards according to

Definition 1 if and only if it satisfies the variational inequality problem:

H∑
h=1

n∑
i=1

n∑
j=1

(π̃h
i (Q

∗) + chij(Q
∗)−

L∑
l=1

αl,hλl∗
j − ρ̃hj (Q

∗))× (Qh
ij −Qh∗

ij )

+
L∑
l=1

n∑
j=1

(
H∑

h=1

αl,h

n∑
i=1

Qh∗
ij − tlj)× (λl

j − λl∗
j ) ≥ 0, ∀(Q, λ) ∈ K1. (9)

Proof: Necessity is first established; that is, if (Q∗, λ∗) ∈ K1 satisfies equilibrium conditions

(7) and (8) according to Definition 1, then it also satisfies variational inequality (9).

Note that, for a fixed pair of country supply and demand markets (i, j), and commodity

h, (7) implies that

(π̃h
i (Q

∗) + chij(Q
∗)−

L∑
l=1

αl,hλl∗
j − ρ̃hj (Q

∗))× (Qh
ij −Qh∗

ij ) ≥ 0, ∀Qh
ij ≥ 0. (10)

Indeed, since, if Qh∗
ij > 0, we know, from (7), that the expression to the left of the multipli-

cation sign in (10) is equal to zero, so (10) holds true. On the other hand, if Qh∗
ij = 0, then

the expression before and after the multiplication sign in (10) will be nonnegative and, thus,

the product is also nonnegative and (10) holds. Since (10) holds for all h, i, j, summation of

(10) yields:

H∑
h=1

n∑
i=1

n∑
j=1

(π̃h
i (Q

∗) + chij(Q
∗)−

L∑
l=1

αl,hλl∗
j − ρ̃hj (Q

∗))× (Qh
ij −Qh∗

ij ) ≥ 0, ∀Q ∈ RH2n
+ . (11)

From equilibrium conditions (8), in turn, one knows that the following inequality must

hold for a fixed nutrient l and country demand market j:

(
H∑

h=1

αl,h

n∑
i=1

Qh∗
ij − tlj)× (λl

j − λl∗
j ) ≥ 0, ∀λl

j ≥ 0. (12)

Inequality (12) holds for any l and j and, therefore, we have the following inequality:

L∑
l=1

n∑
j=1

(
H∑

h=1

αl,h

n∑
i=1

Qh∗
ij − tlj)× (λl

j − λl∗
j ) ≥ 0, ∀λ ∈ RLn

+ . (13)
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Summation of (11) and (13) yields variational inequality (9).

Sufficiency is now proven; that is, if (Q∗, λ∗) ∈ K1 satisfies variational inequality (9) then

it also satisfies equilibrium conditions (7) and (8).

Let λl
j = λl∗

j , ∀l, j. Substitution into variational inequality (9) yields:

H∑
h=1

n∑
i=1

n∑
j=1

(π̃h
i (Q

∗) + chij(Q
∗)−

L∑
l=1

αl,hλl∗
j − ρ̃hj (Q

∗))× (Qh
ij −Qh∗

ij ) ≥ 0, ∀Q ∈ RH2n
+ , (14)

and, with further substitution of Qr
op = Qr∗

op, for r ̸= h; o ̸= i, and p ̸= j, into (14), gives us:

(π̃h
i (Q

∗) + chij(Q
∗)−

L∑
l=1

αl,hλl∗
j − ρ̃hj (Q

∗))× (Qh
ij −Qh∗

ij ) ≥ 0, ∀Qh
ij ≥ 0, (15)

from which it follows that equilibrium conditions (7) must hold.

Letting now Qh
ij = Qh∗

ij for all h, i, j, and substituting these resultants into variational

inequality (9) gives us:

L∑
l=1

n∑
j=1

(
H∑

h=1

αl,h

n∑
i=1

Qh∗
ij − tlj)× (λl

j − λl∗
j ) ≥ 0, ∀λ ∈ RLn

+ . (16)

Letting now λr
g = λr∗

g , for all r ̸= l and g ̸= j, and substituting the resultants into (15)

yields:

(
H∑

h=1

αl,h

n∑
i=1

Qh∗
ij − tlj)× (λl

j − λl∗
j ) ≥ 0, ∀λl

j ≥ 0, (17)

from which equilibrium conditions (8) follow.

The proof is complete. 2

Variational inequality (9) is now put into standard form (cf. Nagurney (1999)): determine

X∗ ∈ K, where

⟨F (X∗), X −X∗⟩ ≥ 0, ∀X ∈ K, (18)

where K denotes the feasible set, which must be closed and convex. The vector X is N -

dimensional, as is F (X), with F (X) being continuous and given, and maps X from K into

RN . ⟨·, ·⟩ denotes the inner product in N -dimensional Euclidean space. Define X ≡ (Q, λ)

and F (X) with components F h
ij(X) = (π̃h

i (Q)+ chij(Q)−
∑L

l=1 α
l,hλl

j − ρ̃hj (Q)); h = 1, . . . , H;

i = 1, . . . , n; j = 1, . . . , n and F l
j(X) = (

∑H
h=1 α

l,h
∑n

i=1Q
h
ij − tlj); l = 1, . . . , L; j = 1, . . . , n.

Here, N = H2n+ Ln. Also, the feasible set K ≡ K1. Clearly, (9) is, thus, of the form (18).
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An alternative variational inequality formulation to (9) of the above equilibrium condi-

tions is now provided. Distinct variational inequality formulations may suggest different

algorithms for the computation of the equilibrium pattern. Examples of algorithms for vari-

ational inequality problems and convergence conditions can be found in Dafermos (1983)

and in Dupuis and Nagurney (1992) with specific applications highlighted also in Nagurney

(1999). For example, the general iterative scheme of Dafermos (1983) induces projection and

relaxation methods whereas the general iterative scheme of Dupuis and Nagurney (1992) in-

duces such algorithms as the Euler and Heun methods. Pang (1985) provides iterative

methods for variational inequality problems defined over Cartesian products of sets. Typi-

cally, a variational inequality algorithm resolves the original variational inequality problem

into subproblems that are easier to solve and sometimes the subproblems can be of the form

of optimization problems.

Furthermore, theoretical results may also be possible because of alternative formulations

as well as interpretations, which we elaborate on further below in terms of the Lagrange

multipliers.

We define the feasible set K2, where K2 ≡ {Q ∈ RH2n
+ |(4b) holds}.

Theorem 2: Alternative Variational Inequality Formulation

A multicommodity shipment flow pattern Q∗ ∈ K2 is an equilibrium according to (7) and (8)

if and only if it satisfies the variational inequality problem:

H∑
h=1

n∑
i=1

n∑
j=1

(π̃h
i (Q

∗) + chij(Q
∗)− ρ̃hj (Q

∗))×
[
Qh

ij −Qh∗
ij

]
≥ 0, ∀Q ∈ K2 (19)

with λ∗ ∈ RLn
+ being the optimal Lagrange multiplier vector associated with the constraints

in (4b).

Proof: We construct the function Φ : RH2n
+ 7→ R such that

Φ(Q) =
H∑

h=1

n∑
i=1

n∑
j=1

(π̃h
i (Q

∗) + chij(Q
∗)− ρ̃hj (Q

∗))×Qh
ij. (20)

Q∗ solves (19) if and only if Q∗ is a global minimum point of Φ in K2.

In addition, we construct the Lagrangian function L, such that

L(Q, λ) = Φ(Q) +
L∑
l=1

n∑
j=1

λl
j(−

H∑
h=1

αl,h

n∑
i=1

Qh
ij + tlj), (21)
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where recall that λ is the Lagrange multiplier vector associated with the nutritional minimum

standards (4b).

The KKT conditions are then:

∂L(Q∗, λ∗)

∂Qh
ij

≥ 0, Qh∗
ij ≥ 0,

∂L(Q∗, λ∗)

∂Qh
ij

Qh∗
ij = 0, h = 1, . . . , H;∀i, j, (22)

λl∗
j (

L∑
l=1

n∑
j=1

(−
H∑

h=1

αl,h

n∑
i=1

Qh∗
ij + tlj) = 0, λl∗

j ≥ 0,
L∑
l=1

n∑
j=1

(−
H∑

h=1

αl,h

n∑
i=1

Qh∗
ij + tlj) ≤ 0,

l = 1, . . . , L; j = 1, . . . , n. (23)

Because the objective function Φ and the constraints (4b) are linear in Q, the KKT

conditions are both necessary and sufficient for Q∗ to be a minimum.

Also, since ∀h, i, j:

∂L(Q∗, λ∗)

∂Qh
ij

= π̃h
i (Q

∗) + chij(Q
∗)−

L∑
l=1

αl,hλl∗
j − ρ̃j(Q

∗), (24)

one can re-express (22) as: for h = 1, . . . , H, and for all i = 1, . . . , n and all j = 1, . . . , n:

π̃h
i (Q

∗) + chij(Q
∗)−

L∑
l=1

αl,hλl∗
j

{
= ρ̃hj (Q

∗), if Qh∗
ij > 0,

≥ ρ̃hj (Q
∗), if Qh∗

ij = 0,
(25)

which corresponds to equilibrium conditions (7).

Furthermore, conditions (23) coincide with equilibrium conditions (8). 2

Remark

It follows from the classical theory of variational inequalities (cf. Kinderlehrer and Stam-

pacchia (1982) and Nagurney (1999), that if the supply price functions are strongly monotone

is s; the unit transportation cost functions are strongly monotone in Q, and the minus de-

mand price functions are strongly monotone in d, then both existence of a solution Q∗ to

variational inequality (19) as well as uniqueness of the solution Q∗ are guaranteed.

In the absence of the minimum nutritional standards as represented by the constraints

in (4b), the above model collapses to a special case - that of a multicommodity spatial price

equilibrium model as delineated below.
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Corollary 1

In the absence of the nutritional minimum standards (4b), the above multicommodity in-

ternational trade model collapses to the special case multicommodity spatial price equilib-

rium model, where K3 ≡ {Q|Q ∈ RH2n
+ } with variational inequality formulation: determine

Q∗ ∈ K3 such that

H∑
h=1

n∑
i=1

n∑
j=1

(π̃h
i (Q

∗) + chij(Q
∗)− ρ̃hj (Q

∗))×
[
Qh

ij −Qh∗
ij

]
≥ 0, ∀Q ∈ K3. (26)

Proof: See Nagurney (1999) and Nagurney and Besik (2022).

3.2 Consumer Subsidies

Observe that equilibrium conditions (7) may be rewritten as: for each commodity h;

h = 1, . . . , H, and for each pair of country supply and demand markets (i, j); i = 1, . . . , n;

j = 1, . . . , n:

π̃h
i (Q

∗) + chij(Q
∗)

{
= ρ̃hj (Q

∗) +
∑L

l=1 α
l,hλl∗

j , if Qh∗
ij > 0,

≥ ρ̃hj (Q
∗) +

∑L
l=1 α

l,hλl∗
j , if Qh∗

ij = 0.
(27)

Hence, according to (27), the expression
∑L

l=1 α
l,hλl∗

j for each commodity h and country

demand market j provides the additional “value” associated with the commodity h at country

demand market j and, in effect, is the additional price of the commodity that will guarentee

that the commodity shipments will be such that the minimum nutritional standards are met

in the country for nutrients needed by its population. Without such a subsidy with respect

to each commodity h, the volume of commodities to its country demand market may not be

sufficient to guarantee that the nutritional minimal standards are achieved since consumers

would only be willing to pay a price of ρ̃hj (Q
∗) for commodity h at j without the subsidy.

Also, this consumer subsidy is for a “unit” of the commodity and, in the case of agricul-

tural commodities in international trade, the unit of measure is, typically, a ton. The total

financial outlay, hence, for the government of country j then would be, for commodity h:

L∑
l=1

αl,hλ∗
j

n∑
i=1

Qh∗
ij ,

with the financial outlay covering subsidies for all commodities:

H∑
h=1

L∑
l=1

αl,hλ∗
j

n∑
i=1

Qh∗
ij .
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2.3 Illustrative Examples

To further amplify the importance of the modeling framework, simple illustrative exam-

ples are now presented.

First, an example is presented without nutritional minimum standards and then the

results given for the same example, but with an added nutritional minimum standard. The

commodity is wheat, which is essential since it is used in flour for the production of bread, a

staple in MENA countries, among other countries. Wheat, in addition to providing calories,

is also a source of protein.

The country supply market is Ukraine, often called the bread basket of Europe. The

period of time is 1 year and prior to the full-scale invasion of Ukraine by Russia on February

24, 2022. The country demand market is Lebanon. Without loss of generality, the country

supply market of Ukraine is labeled by 1 and the country demand market of Lebanon by 1.

We suppress the superscript h since there is only a single commodity.

The unit of commodity shipment is a ton, which is, as noted earlier, quite standard for

agricultural products in the context of international trade. Also, the economic functions are

in a common currency - the US dollar.

The supply price function in Ukraine is:

π1(s) = .0001s1 + 200.

The demand price function in Lebanon is:

ρ1(d) = −.0001d1 + 411,

and the unit transportation cost associated with shipping the wheat from Ukraine to Lebanon,

which would be via rail and then the Black Sea, is:

c11 = .00002Q11 + 90.

Note that, in this example, one has that

s∗1 = d∗1 = Q∗
11.

Solving for Q∗
11 in the equilibrium condition, since Q∗

11 > 0:

π1 + c11 = ρ1,

17



one obtains, after making use of the conservation of flow equations:

.0001Q11 + 200 + .00002Q11 + 90 = −.0001Q11 + 411,

which simplifies to:

.00022Q∗
11 = 121,

or

Q∗
11 = 550, 000.

Furthermore, π1 = 255, c11 = 101, and ρ1 = 356. Clearly, the equilibrium conditions

hold. Furthermore, the supply price, unit transportation cost, and the demand price are

very reasonable (cf. Nagurney et al. (2023)) and correspond to similar values achieved in

practice prior to the war.

This example is now expanded to include a nutritional minimum standard. Specifically,

wheat (which is processed into flour) has 3,300,000 calories per ton. Plus, assuming 3,000

calories per day per individual (which is generous), and a population in Lebanon of 5.5

million, since there are 365 days in a year, t1 = 6.02× 1012.

Assuming that λ∗
1 > 0, according to equilibrium condition (8), we obtain

3.3× 106Q∗
11 = 6.02× 1012,

and, therefore, Q∗
11 = 1.825× 106.

Under this commodity shipment pattern, the supply price is:

π1 = 382.50,

the unit transportation cost is:

c11 = 126.50,

and the demand price is:

ρ1 = 228.50.

Making use of the equality in equilibrium conditions (7) yield:

λ∗
1 = 8.5× 10−5,

with

α1λ∗
1 = 280.50.
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Hence, the consumer subsidy that the government of Lebanon should pay out is 280.50

per ton of wheat. Without the subsidy, the total calories obtained by the Lebanese from

wheat would be 18.15 × 1011, which is an order of magnitude less than 6.02 × 1012, the

amount obtained with the consumer subsidy. The total financial payout in terms of consumer

subsidies (for all the tons) is, therefore, α1λ∗
aQ

∗
11 = 280.50× 1.825× 106 = 511.91× 106.

4. The Computational Procedure

The algorithm that is applied to compute the equilibrium multicommodity shipment and

Lagrange multiplier patterns in numerical examples of relevance to practice in Section 4 is

the modified projection method of Korpelevich (1977). Its convergence is guaranteed if the

F (X) as in (18) is monotone and Lipschitz continuous.

Recall that function F (X) is said to be monotone if

⟨F (X1)− F (X2), X1 −X2⟩ ≥ 0, ∀X1, X2 ∈ K. (28)

Also, F (X) is Lipschitz continuous, if there exists an η > 0, known as the Lipschitz

constant, such that

∥F (X1)− F (X2)∥ ≤ η∥X1 −X2∥, ∀X1, X2 ∈ K. (29)

Note that if the π, c, and −ρ functions are strongly or strictly monotone or just monotone

then F (X) for the international trade model is monotone.

For completeness and easy reference, the steps of the modified projection method are

delineated below. Here, τ corresponds to an iteration. The explicit form of these steps for

the solution of the international trade equilibrum model with minimum nutritional standards

is then given. Because the feasible set K for the model is the nonnegative orthant, the steps

consist of closed form expressions for the multicommodity shipments and for the Lagrange

multiplers at each iteration. The algorithm is, hence, easy to implement.

The Modified Projection Method

Step 0: Initialization

Initialize with X0 ∈ K. Set the iteration counter τ = 1 and let ζ be a scalar such that

0 < ζ ≤ 1
η
, where η is the Lipschitz constant.
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Step 1: Computation

Compute X̄τ by solving the variational inequality subproblem:

⟨X̄τ + ζF (Xτ−1)−Xτ−1, X − X̄τ ⟩ ≥ 0, ∀X ∈ K. (30)

Step 2: Adaptation

Compute Xτ by solving the variational inequality subproblem:

⟨Xτ + ζF (X̄τ )−Xτ−1, X −Xτ ⟩ ≥ 0, ∀X ∈ K. (31)

Step 3: Convergence Verification

If |Xτ −Xτ−1| ≤ ϵ, with ϵ > 0, a pre-specified tolerance, then stop; otherwise, set τ := τ +1

and go to Step 1.

The explicit formulae for Step 1 above are now given.

Explicit Formulae at Iteration τ for the Multicommodity Shipments in Step 1

The modified projection method results in the following closed form expressions for (30) for

the multicommodity shipments in Step 1 for the solution of variational inequality (9):

Q̄hτ
ij = max{0, Qhτ−1

ij + ζ(ρ̃hj (Q
τ−1)− π̃h

i (Q
τ−1)− chij(Q

τ−1) +
L∑
l=1

αl,hλlτ−1
j )}, ∀h, i, j. (32)

Explicit Formulae at Iteration τ for the Lagrange Multipliers in Step 1

The closed form expressions for the Lagrange multipliers in (27) for our variational inequality

are:

λ̄lτ
j = max{0, λlτ−1

j + ζ(−
H∑

h=1

αl,h

n∑
i=1

Qhτ−1
ij + tlj)}, ∀l, j. (33)

The analogous explicit formulae for the multicommodity shipment variables and for the

Lagrange multiplier variables in (31) of Step 2 readily follow.

5. Numerical Examples

The numerical examples consist of three countries: Ukraine, Egypt, and Lebanon. The

examples consist of Examples 1 through 3 and consider the commodity of wheat. The
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Figure 2: The International Trade Network for Examples 1 Through 3

network topology for these examples is, hence, as depicted in Figure 2. Ukraine corresponds

to supply and demand market node 1; Egypt to such nodes 2, and Lebanon to supply and

demand market node 3.

The modified projection method was implemented in Fortran and a Linux sytem at the

University of Massachusetts used for the computations. The complete input and output data

are reported for all the numerical examples below. The algorithm was initialized with all

variables set to 0.00. The ζ was set to .01. The algorithm was deemed to have converged if

the absolute value of all successive variable iterates was less than or equal to ϵ = 10−2.

Example 1: Baseline

Example 1 is situated (as the Illustrative Examples were) prior to Russia’s invasion of Ukraine

on February 24, 2022.

Example 1 has no minimum nutritional standards for wheat and serves as the baseline

for subsequent examples. The nutrient considered is that of calories.

The data, in the US dollar currency, are as follows. Wheat is denoted by the superscript

1.

The country supply price functions for wheat are:

π1
1(s) = .000002s11 + 230, π1

2(s) = .000002s12 + 265, π1
3(s) = .000155s13 + 275.

The commodity unit transportation cost functions for wheat are:

c111(Q) = .000001Q1
11 + 35, c112(Q) = .000005Q1

12 + 80, c113(Q) = .000025Q1
13 + 80,

c121(Q) = .001565Q1
21 + 80, c122(Q) = .000001Q1

22 + 40, c123(Q) = .001175Q1
23 + 50,
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c131(Q) = .001375Q1
31 + 80, c132(Q) = .001195Q1

32 + 50, c133(Q) = .000095Q1
33 + 30.

The country demand price functions for wheat are:

ρ11(d) = −.000001d11 + 320, ρ12(d) = −.000001d12 + 355, ρ13(d) = −.000017d13 + 355.

The computed equilibrium commodity shipments are reported in Table 2.

Based on the equilibrium volumes, the caloric needs of the populations in Egypt and

Lebanon are not satisfied but they are in Ukraine. Therefore, the impacts of imposing

minimum nutritional caloric amounts in each of the three countries, based on the population

of each country, are now explored in the next two examples.

Example 2

Example 2 has the identical data to that in Example 1 except that now minimum caloric

requirements for the populations in Ukraine, Egypt, and Lebanon are included. A population

of 43 millionis assumed for Ukraine, a population of 109 million for Egypt, and a population

of 5.5 million for Lebanon. As in the second Illustrative Example, a caloric minimum of

3,000 per individual is assumed and 365 days to the year. Wheat has 3,300,000 calories per

ton. Since here a single nutrient (calories) is considered and note that wheat can have a

substantial amount of protein, the l in the notation is suppressed. Hence, α1 = 3, 300, 000,

and t1 = 4.71 × 1013, t2 = 1.19 × 1014, and t3 = 6.02 × 1012. The computed equilibrium

commodity shipments are given in Table 2.

The consumer subsidies are as follows. The subsidy in Ukraine is: 19.02. The subsidy in

Egypt is: 78.00, and the subsidy in Lebanon is: 71.26.

Example 3

Example 3 has the identical data to that in Example 2 except that now each individual

in each country has a minimum caloric requirement of only 2,000 calories. α1 remains at

3, 300, 000, but now t1 = 3.14× 1013, t2 = 7.96× 1013, and t3 = 4.02× 1012. The computed

equilibrium commodity shipments are reported in Table 2.

The consumer subsidies are now as follows. The consumer subsidy is 0.00 in Ukraine. The

consumer subsidy is 38.40 in Egypt, and the consumer subsidy is 32.79 in Lebanon. Ukraine

is able to meet its nutritional caloric requirements by itself and no imports are needed, which

is quite reasonable. Note that the subsidies for consumers in all three countries are lower

than in Example 2 and that is because the caloric minimum is set at 2,000 rather than at
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Table 2: Equilibrium Solution for Examples 1, 2, and 3

Equilibrium Wheat Commodity Flows Ex. 1 Ex. 2 Ex. 3
Q1∗

11 11650770.00 14200000.00 9520001.00
Q1∗

12 1335727.75 8664518.00 5833827.00
Q1∗

13 362736.38 1444176.25 961641.25
Q1∗

21 0.00 0.00 0.00
Q1∗

22 10912198.00 27382862.00 18261452.00
Q1∗

23 7732.52 21733.81 13132.48
Q1∗

31 0.00 0.00 0.00
Q1∗

32 0.00 12619.76 4720.99
Q1∗

33 163465.44 354090.00 245226.22
Wheat Supply Prices at Equilibrium Ex. 1 Ex. 2 Ex. 3

π1
1(s

∗) 256.70 278.62 262.63
π1
2(s

∗) 286.84 319.81 301.55
π1
3(s

∗) 300.34 331.84 313.55
Transportation Costs at Equilibrium Ex. 1 Ex. 2 Ex. 3

c111(Q
∗) 46.65 49.20 44.52

c112(Q
∗) 86.68 123.32 109.17

c113(Q
∗) 89.07 116.10 104.04

c121(Q
∗) 80.00 80.00 80.00

c122(Q
∗) 50.91 67.38 58.26

c123(Q
∗) 59.09 75.54 65.43

c131(Q
∗) 80.00 80.00 80.00

c132(Q
∗) 50.00 65.08 55.64

c133(Q
∗) 45.53 63.64 53.30

Wheat Demand Prices at Equilibrium Ex. 1 Ex. 2 Ex. 3
ρ11(d

∗) 308.35 305.80 310.48
ρ12(d

∗) 342.75 318.94 330.90
ρ13(d

∗) 345.92 324.06 334.26

3,000. Wheat farmers get the highest price per ton of wheat in Example 2 and the lowest

in Example 1. This shows that, through the subsidization of consumers, producers can also

benefit. The highest commodity shipments are obtained in Example 2 across all the country

trade flows. The prices are reasonable - recall that they are for a ton of grain (see, also,

Nagurney et al. (2023)).

Sensitivity analysis is now conducted using Example 3. Specifically, with the major

invasion of Ukraine by Russia on February 24, 2022, farmers in Ukraine have been faced

with many challenges and the challenges are affecting the supply prices of Ukrainian wheat

(cf. Nagurney et al. (2023)). In Figure 3, the consumer subsidies are displayed that Ukraine,

Egypt, and Lebanon would need to pay to guarantee that the caloric needs of their respective
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population are met. Recall that the intercept in Ukraine’s supply price function in Examples

1 through 3 is 230. This term is increased, which would reflect disruptions to farming, and

the results reported in Figure 3.

Figure 3: Sensitivity Analysis for the Supply Price Function Intercept for Ukraine in Example
3

As can be seen from Figure 3, when the supply price intercept in Ukraine for wheat

increases, all countries need to increase their consumer subsidies to ensure that the caloric

needs of their population are met. Disruptions to agriculture in one country, because of

international trade and connectivity, can affect food security in other countries. The exam-

ples are stylized but demonstrate that a network equilibrium model for international trade

with minimum nutritional standards and consumer subsidies can yield useful insights. It

is important to address food security issues and challenges through rigorous mathematical

models.

6. Summary and Conclusions

Food insecurity and hunger have been growing globally with climate change, the COVID-

19 pandemic, as well as major conflicts including Russia’s war on Ukraine exacerbating the

pain and suffering. International trade has served as a mechanism for the allocation of

resources and products including agricultural ones. Nutritious food is essential to a thriving,

healthy citizenry and, thus, governments have, historically, made use of various policies
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for agricultural trade from the imposition of tariffs and quotas to subsidies for farmers.

In this paper, we provide an integrated framework for multicommodity international trade

with a focus on food security through minimum nutritional standards that are enabled

through consumer subsidies. The theoretical framework is that of variational inequalities,

which is utilized for the formulation of the governing equilibrium conditions (and alternative

such formulations are provided), qualitative analysis, as well as for the construction of an

algorithm that has nice features for implementation for our model. In addition, we propose

explicit formulae for the consumer subsidies.

The model is illustrated via simple examples as well as a series of examples drawn from the

real world - that of Russia’s was on Ukraine and the impacts on food insecurity. Specifically,

we present and solve numerical examples for the countries of Ukraine, Egypt, and Lebanon

and the commodity of wheat. Sensitivity analysis results are also displayed illustrating

the changes in consumer subsidies needed as the supply price function for Ukraine, often

referred to as the breadbasket of Europe, is modified to reflect increases in cost due to war,

for example. The results demonstrate that a local disruption can have impacts on food

security in multiple countries. This work adds to the literature on international trade and

food security with an emphasis on nutrition and government interventions.

Future research is possible in many different directions, including: incorporating different

classes of consumers in countries and their nutritional minimal requirements; including bud-

get constraints of governments for nutritional subsidies; comparing subsidies for farmers (on

the production side) with subsidies for consumers (on the consumption side), and factoring

in accessibility of consumers to the agricultural products for their nutritional needs, among

other topics.
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