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Summary

In this chapter, we provide the foundations of the rigorous formulation, analysis, and solu-

tion of transportation network problems. We discuss user-optimization, which corresponds

to decentralized decision-making, and system-optimization, which corresponds to centralized

decision-making where the central controller can route the traffic in an optimal manner. We

describe a spectrum of increasingly sophisticated models and also relate transportation net-

works to other network application domains in which flows (and associated decision-making)

are essential, such as the Internet, supply chains, electric power distribution and generation

networks, as well as financial networks. Finally, we demonstrate how the importance of

transportation network components, that is, nodes and links can be identified (and ranked)

through a recently proposed transportation network efficiency measure and accompanying

component importance definition. Examples are included throughout the chapter for illus-

trative purposes.
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1. Introduction

Transportation networks are complex, large-scale systems, and come in a variety of forms,

such as road, rail, air, and waterway networks. Transportation networks provide the foun-

dation for the functioning of our economies and societies through the movement of people,

goods, and services. From an economic perspective, the supply in such network systems

is represented by the underlying network topology and the cost characteristics whereas the

demand is represented by the users of the transportation system. An equilibrium occurs

when the number of trips between an origin (e.g., residence/place of employment) and desti-

nation (place of employment/residence) equals the travel demand given by the market price,

typically, represented by the travel time for the trips (Nagurney (2004)).

The study of transportation networks and their efficient management dates to ancient

times. It is known, for example, that Romans imposed controls over chariot traffic during

different times of day in order to deal with the congestion (see Banister and Button (1993)).

From an economic perspective, some of the earliest contributions to the subject date to Kohl

(1841) and to Pigou (1920), who considered a two-node, two-link transportation network,

identified congestion as a problem, and recognized that distinct behavioral concepts regarding

route selection may prevail (see also Knight (1924)).

The formal study of transportation networks has challenged transportation scientists,

economists, operations researchers, engineers, and physicists for reasons, including: the size

and scope of the systems involved; the behavior of the users of the network which may vary

according to the application setting, thereby leading to different optimality/equilibrium con-

cepts; distinct classes of users may perceive the cost of utilizing the network in an individual

fashion, and congestion, which is playing an increasing role in numerous transportation net-

works.

For example, to help one fix the size and scope of modern-day transportation networks,

we point out that the topology of the Chicago Regional Transportation Network consists of

12,982 nodes, 39,018 links, and 2,297,945 origin/destination pairs of nodes between which

travelers choose their routes (cf. Bar-Gera (2002)), whereas in the Southern California Asso-

ciation of Governments’ model there are 25,428 nodes, 99,240 links, 3,217 origin/destination

pairs, and 6 distinct classes of users (Wu, Florian, and He (2000)).
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Road congestion results, according to estimates, in approximately $100 billion in lost

productivity in the United States alone with the figure being about $150 billion in Europe

with the number of cars expected to increase by 50 percent by 2010 and to double by

2030 (see Nagurney (2000) and the references therein). In particular, the growth in the

usage of motorized vehicles, especially, cars, in the developing world, is transforming such

countries as China and India. Moreover, in many of today’s transportation networks, the

“noncooperative” behavior of users aggravates the congestion problem. For example, in

the case of urban transportation networks, travelers select their routes from an origin to a

destination so as to minimize their own travel cost or travel time, which although optimal

from a user’s perspective (user-optimization) may not be optimal from a societal one (system-

optimization) where a decision-maker or central controller has control of the flows on the

network and seeks to allocate the flows so as to minimize the total cost in the network.

Coupled with road congestion is increasing pollution, another negative externality, which is

further impacting the world that we live in (see Nagurney (2000)).

The famous Braess (1968) paradox example, illustrates the distinction between non-

cooperative (or user-optimized) behavior versus system-optimized behavior, in a concrete,

vivid way. It that example, it is assumed that the underlying behavioral principle is that of

user-optimization and travelers select their routes accordingly. In the Braess network, the

addition of a new road with no change in travel demand results in all travelers in the network

incurring a higher travel cost. Hence, they are all worse off after the addition of the new

road! Actual practical instances of such a phenomenon have been identified in New York

City and in Stuttgart, Germany. In 1990, 42nd Street in New York was closed for Earth

Day, and the traffic flow in the area improved (see Kolata (1990)). In Stuttgart, in turn,

a new road was added to the downtown, but the traffic flow worsened and, following com-

plaints, the new road was torn down (cf. Bass (1992)). Similar experiences have been found

recently in Seoul, Korea (Vidal (2006)). Interestingly, this phenomenon is also relevant to

telecommunications networks (see Korilis, Lazar, and Orda (1999)) and, specifically, to the

Internet (cf. Cohen and Kelly (1990) and Nagurney, Parkes, and Daniele (2006)). Such a

result does not occur in system-optimized networks where the addition of a new road/link,

if used, would lower the total network cost. Today, congestion pricing is an active topic

of research, and tolls have had success in ameliorating traffic by altering people’s behavior
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in various cities around the world, including the much-publicized London, United Kingdom

experience (see, e.g., Lawphongpanich, Hearn, and Smith (2006)).

In this chapter, we recall the foundations of the rigorous study of transportation networks

and we trace the evolution of modeling frameworks for their study. The exposition is meant to

be accessible to practitioners and to students, as well as to researchers and policy makers and

to those interested in related network topics. Technical derivations and further supporting

documentation are referred to in the citations. Further useful material and a supplementary

chronological perspective of developments on this topic can be found in the review articles

of Florian (1986), Boyce, LeBlanc, and Chon (1988), and Florian and Hearn (1995); in the

books by Beckmann, McGuire, and Winsten (1956), Sheffi (1985), Patriksson (1994), Ran

and Boyce (1996), Nagurney (1999, 2000), Nagurney and Dong (2002a), and in the volumes

edited by Florian (1976, 1984), Volmuller and Hamerslag (1984), Lesort (1996), Marcotte

and Nguyen (1998), Gendreau and Marcotte (2002), Taylor (2002), Mahmassani (2005),

Bar-Gera and Boyce (2005), and Nagurney (2006a, b).

This chapter, specifically, overviews some of the methodologies, whose very development,

has been motivated by the need to formulate, analyze, and solve transportation network

problems. It also relates the contributions of transportation modeling and algorithmic ad-

vances to other network application domains. Finally, given the importance of transportation

networks and the closely related telecommunication, electric power generation and distrib-

ution networks, supply chain, as well as financial networks (cf. Nagurney (2006a,b)), we

also, for completeness, discuss a network efficiency measure, which enables the identification

of the critical nodes and links. This measure was proposed by Nagurney and Qiang (2007)

and can aid policy makers, planners, engineers, as well as network designers in identifying

which network components need to be protected, since their absence due, for example, to

destruction by natural disasters, structural failures, terrorist attacks, etc., has the greatest

impact. Hence, the transportation network is most vulnerable when such nodes/links are

removed from the system.
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2. Fundamental Decision-Making Concepts and Models

Over half a century ago, Wardrop (1952) explicitly considered alternative possible behav-

iors of users of transportation networks, notably, urban transportation networks and stated

two principles, which are commonly named after him:

First Principle: The journey times of all routes actually used are equal, and less than

those which would be experienced by a single vehicle on any unused route.

Second Principle: The average journey time is minimal.

The first principle corresponds to the behavioral principle in which travelers seek to (uni-

laterally) determine their minimal costs of travel whereas the second principle corresponds

to the behavioral principle in which the total cost in the network is minimal.

Beckmann, McGuire, and Winsten (1956) were the first to rigorously formulate these con-

ditions mathematically. Specifically, Beckmann, McGuire, and Winsten (1956) established

the equivalence between the transportation network equilibrium conditions, which state that

all used paths connecting an origin/destination (O/D) pair will have equal and minimal

travel times (or costs) (corresponding to Wardrop’s first principle), and the Kuhn-Tucker

(1951) conditions of an appropriately constructed optimization problem, under a symmetry

assumption on the underlying functions. Hence, in this case, the equilibrium link and path

flows could be obtained as the solution of a mathematical programming problem. Their

approach made the formulation, analysis, and subsequent computation of solutions to trans-

portation network problems based on actual transportation networks realizable.

Dafermos and Sparrow (1969) coined the terms user-optimized (U-O) and system-optimized

(S-O) transportation networks to distinguish between two distinct situations in which, re-

spectively, users act unilaterally, in their own self-interest, in selecting their routes, and in

which users select routes according to what is optimal from a societal point of view, in that

the total cost in the network system is minimized. In the latter problem, marginal total costs

rather than average costs are equilibrated. The former problem coincides with Wardrop’s

first principle, and the latter with Wardrop’s second principle. See Table 1 for the two

distinct behavioral principles underlying transportation networks.
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Table 1: Distinct Behavior on Transportation Networks

User-Optimization System-Optimization
⇓ ⇓

User Equilibrium Principle: System Optimality Principle:
User travel costs on used paths for
each O/D pair are equalized and
minimal.

Marginals of the total travel cost on
used paths for each O/D pair are
equalized and minimal.

The concept of “system-optimization” is also relevant to other types of “routing mod-

els” in transportation, as well as in communications (cf. Bertsekas and Gallager (1992)),

including those concerned with the routing of freight and computer messages, respectively.

Dafermos and Sparrow (1969) also provided explicit computational procedures, that is, al-

gorithms, to compute the solutions to such network problems in the case where the user

travel cost on a link was an increasing (in order to handle congestion) function of the flow

on the particular link, and linear. Today, the concepts of user-optimization versus system-

optimization also capture, respectively, decentralized versus centralized decision-making on

networks, including, the Internet (cf. Roughgarden (2005) and Boyce, Mahmassani, and

Nagurney (2005)).

2.1 User-Optimization versus System-Optimization

In this section, the basic transportation network models are first reviewed, under distinct

assumptions as to their operation and the underlying behavior of the users of the network.

The models are classical and are due to Beckmann, McGuire, and Winsten (1956) and

Dafermos and Sparrow (1969). In subsequent sections, we present more general models

in which the user link cost functions are no longer separable but, rather, are asymmetric.

For such models we also provide the variational inequality formulations of the governing

equilibrium conditions, since, in such cases, the governing equilibrium conditions can no

longer be reformulated as the Kuhn-Tucker conditions of a convex optimization problem.

For definiteness, and for easy reference, we present the classical user-optimized network

model in Section 2.1.1 and then the classical system-optimized network model in Section
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2.1.2. We then, for illustrative purposes, recall the Braess (1968) paradox in Section 2.1.3.

2.1.1 The User-Optimized Problem

The user-optimized network problem is also commonly referred to in the transportation

literature as the traffic assignment problem or the traffic network equilibrium problem. Recall

that user-optimization follows Wardrop’s first principle.

Consider a general network G = [N ,L], where N denotes the set of nodes, and L the

set of directed links. Links connect pairs of nodes in the network and are denoted by a, b,

etc. Let p denote a path consisting of a sequence of links connecting an origin/destination

(O/D) pair of nodes. Paths are assumed to be acyclic and are denoted by p, q, etc. In trans-

portation networks, nodes correspond to origins and destinations, as well as to intersections.

Links, on the other hand, correspond to roads/streets in the case of urban transportation

networks and to railroad segments in the case of train networks. A path in its most basic

setting, thus, is a sequence of “roads” which comprise a route from an origin to a destina-

tion. In the telecommunication context, however, nodes can correspond to switches or to

computers and links to telephone lines, cables, microwave links, etc. Here we consider paths,

rather than routes, since the former subsumes the latter. The network concepts presented

here are sufficiently general to abstract not only transportation decision-making but also

combined/integrated location-transportation decision-making, which we return to later. In

addition, in the setting of supernetworks (see Nagurney and Dong (2002a)), a path is viewed

more broadly and need not be limited to a route-type decision but may, in fact, correspond

to not only transportation but also to telecommunications decision-making, or a combination

thereof, as in the case of teleshopping and/or telecommuting (see, e.g., Nagurney, Dong, and

Mokhtarian (2002a, b)).

Let Pω denote the set of paths connecting the origin/destination (O/D) pair of nodes

ω. Let P denote the set of all paths in the network and assume that there are J ori-

gin/destination pairs of nodes in the set Ω. Let xp represent the nonnegative flow on path

p and let fa denote the flow on link a. The path flows on the network are grouped into the

column vector x ∈ RnP
+ , where nP denotes the number of paths in the network. The link

flows, in turn, are grouped into the column vector f ∈ RnL
+ , where nL denotes the number
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of links in the network.

We assume, as given, the demand associated with each O/D pair ω, which is denoted by

dω, for ω ∈ Ω. In the network, the following conservation of flow equations must hold:

dω =
∑

p∈Pω

xp, ∀ω ∈ Ω, (1)

where xp ≥ 0, ∀p ∈ P ; that is, the sum of all the path flows between an origin/destination

pair ω must be equal to the given demand dω.

In addition, the following conservation of flow equations must also hold:

fa =
∑

p∈P

xpδap, ∀a ∈ L, (2)

where δap = 1, if link a is contained in path p, and 0, otherwise. Expression (2) states that

the flow on a link a is equal to the sum of all the path flows on paths p that contain (traverse)

link a.

In particular, equations (1) and (2) guarantee that the flows in the network (be they

travelers, computer messages, etc.) are conserved, that is, do not disappear (or are lost) in

the network and arrive at the designated destinations from the origins.

Let ca denote the user link cost associated with traversing link a, and let Cp denote the

user cost associated with traversing the path p. Assume that the user link cost function is

given by the separable function in which the cost on a link depends only on the flow on the

link, that is,

ca = ca(fa), ∀a ∈ L, (3)

where ca is assumed to be continuous and an increasing function of the link flow fa in order

to model the effect of the link flow on the cost and, in particular, congestion.

Here the cost is interpreted in a general sense. From a transportation engineering per-

spective, the cost on a link is assumed, typically, to coincide with the travel time on a link

(see also Sheffi (1985) and Nagurney (2000)). In addition, one may construct generalized

user link cost functions, which weight, for example, the monetary cost and the cost associ-

ated with travel time, as well as other criteria, including environmental ones (cf. Nagurney

and Dong (2002a, b) and the references therein).
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The cost on a path is equal to the sum of the costs on the links that make up that path,

that is,

Cp =
∑

a∈L
ca(fa)δap, ∀p ∈ P. (4)

Transportation Network Equilibrium Conditions

In the case of the user-optimization (U-O) problem one seeks to determine the path flow

pattern x∗ (and the corresponding link flow pattern f ∗) which satisfies the conservation

of flow equations (1) and (2), and the nonnegativity assumption on the path flows, and

which also satisfies the transportation network equilibrium conditions given by the following

statement. For each O/D pair ω ∈ Ω and each path p ∈ Pω:

Cp

{
= λω, if x∗

p > 0
≥ λω, if x∗

p = 0.
(5)

Hence, in the user-optimization problem there is no explicit optimization concept, since

users of the transportation network system act independently, in a noncooperative man-

ner, until they cannot improve on their situations unilaterally and, thus, an equilibrium is

achieved, governed by the above equilibrium conditions. Indeed, conditions (5) are simply

a restatement of Wardrop’s (1952) first principle mathematically and mean that only those

paths connecting an O/D pair will be used which have equal and minimal user costs. In (5)

the minimal cost for O/D pair ω is denoted by λω and its value is obtained once the equilib-

rium flow pattern is determined. Otherwise, a user of the network could improve upon his

situation by switching to a path with lower cost. User-optimization represents decentralized

decision-making, whereas system-optimization represents centralized decision-making. See

also Table 1.

In order to obtain a solution to the above problem, Beckmann, McGuire, and Winsten

(1956) established that the solution to the network equilibrium problem, in the case of user

link cost functions of the form (3), in which the cost on a link only depends on the flow on

that link and is assumed to be continuous and an increasing function of the flow, could be

obtained by solving the following optimization problem:

Minimize
∑

a∈L

∫ fa

0
ca(y)dy (6)
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subject to:
∑

p∈Pω

xp = dω, ∀ω ∈ Ω, (7)

fa =
∑

p∈P

xpδap, ∀a ∈ L, (8)

xp ≥ 0, ∀p ∈ P. (9)

The objective function given by (6) is simply a device constructed to obtain a solution

using general purpose convex programming algorithms. It does not possess the economic

meaning of the objective function encountered in the system-optimization problem which will

be recalled below. Note that in the case of separable, as well as nonseparable, but symmetric

(which we come back to later), user link cost functions, the λω term in (5) corresponds to

the Lagrange multiplier associated with the constraint (7) for that O/D pair ω. However, in

the case of nonseparable and asymmetric functions there is no optimization reformulation of

the transportation network equilibrium conditions (5) and the λω term simply reflects the

minimum user cost associated with the O/D pair ω at the equilibrium. As noted as early as

Dafermos and Sparrow (1969), the above network equilibrium conditions also correspond to

a Nash equilibrium (see Nash (1950, 1951)). This connection has now garnered great interest

in computer science (see Roughgarden (2005) and the references therein). The equilibrium

link flow pattern is unique for problem (6), subject to (7) – (9), if the objective function (6)

is strictly convex (for additional background on optimization theory, see Bazaraa, Sherali,

and Shetty (1993)).

2.1.2 The System-Optimized Problem

We now describe and discuss the system-optimized problem. Again, as in the user-

optimized problem of Section 2.1.1, the network G = [N ,L], the demands associated with

the origin/destination pairs, and the user link cost functions are assumed as given. In the

system-optimized problem, there is a central controller of the traffic who routes the traffic

in an optimal manner so as to minimize the total cost in the network.

The total cost on link a, denoted by ĉa(fa), is given by:

ĉa(fa) = ca(fa) × fa, ∀a ∈ L, (10)
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that is, the total cost on a link is equal to the user link cost on the link times the flow on

the link. As noted earlier, in the system-optimized problem, there exists a central controller

who seeks to minimize the total cost in the network system, where the total cost is expressed

as
∑

a∈L
ĉa(fa), (11)

and the total cost on a link is given by expression (10).

The system-optimization (S-O) problem is, thus, given by:

Minimize
∑

a∈L
ĉa(fa) (12)

subject to the same conservation of flow equations as for the user-optimized problem, as well

as the nonnegativity assumption of the path flows; that is, constraints (7), (8), and (9) must

also be satisfied for the system-optimized problem.

The total cost on a path, denoted by Ĉp, is the user cost on a path times the flow on a

path, that is,

Ĉp = Cpxp, ∀p ∈ P, (13)

where the user cost on a path, Cp, is given by the sum of the user costs on the links that

comprise the path (as in (4)), that is,

Cp =
∑

a∈L
ca(fa)δap, ∀a ∈ L. (14)

In view of (2), (3), and (4), one may express the cost on a path p as a function of the path

flow variables and, hence, an alternative version of the above system-optimization problem

with objective function (12) can be stated in path flow variables only, where one has now

the problem:

Minimize
∑

p∈P

Cp(x)xp (15)

subject to constraints (7) and (9).
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System-Optimality Conditions

Under the assumption of increasing user link cost functions, the objective function (12) in

the S-O problem is convex, and the feasible set consisting of the linear constraints (7) – (9)

is also convex. Therefore, the optimality conditions, that is, the Kuhn-Tucker conditions

are: for each O/D pair ω ∈ Ω, and each path p ∈ Pω, the flow pattern x (and corresponding

link flow pattern f), satisfying (7)–(9) must satisfy:

Ĉ ′
p

{
= µω, if xp > 0
≥ µω, if xp = 0,

(16)

where Ĉ ′
p denotes the marginal of the total cost on path p, given by:

Ĉ ′
p =

∑

a∈L

∂ĉa(fa)

∂fa

δap, (17)

evaluated in (16) at the solution and µω is the Lagrange multiplier associated with constraint

(7) for that O/D pair ω.

Observe that conditions (16) may be rewritten so that there exists an ordering of the

paths for each O/D pair whereby all used paths (that is, those with positive flow) have

equal and minimal marginal total costs and the unused paths (that is, those with zero flow)

have higher (or equal) marginal total costs than those of the used paths. Hence, in the

S-O problem, and as noted in Table 1, according to the optimality conditions (16), it is the

marginal of the total cost on each used path connecting an O/D pair which is equalized and

minimal (see also, e.g., Dafermos and Sparrow (1969)).

2.1.3 The Braess Paradox

In order to illustrate the difference between user-optimization and system-optimization in

a concrete example, and to reinforce the above concepts, we now recall the well-known Braess

(1968) paradox; see also Braess, Nagurney, and Wakolbinger (2005). This paradox is as

relevant to transportation networks as it is to telecommunication networks, and, in particular,

to the Internet, since such networks are subject to traffic operating in a decentralized decision-

making manner (cf. Korilis, Lazar, and Orda (1999), Nagurney, Parkes, and Daniele (2006),

and the references therein).
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Figure 1: The Braess Network Example

Assume a network as the first network depicted in Figure 1 in which there are four nodes:

1, 2, 3, 4; four links: a, b, c, d; and a single O/D pair ω1 = (1, 4). There are, hence, two paths

available to travelers between this O/D pair: p1 = (a, c) and p2 = (b, d).

The user link travel cost functions are:

ca(fa) = 10fa, cb(fb) = fb + 50, cc(fc) = fc + 50, cd(fd) = 10fd.

Assume a fixed travel demand dω1 = 6.

It is easy to verify that the equilibrium path flows are: x∗
p1

= 3, x∗
p2

= 3, the equilibrium

link flows are: f ∗
a = 3, f ∗

b = 3, f ∗
c = 3, f ∗

d = 3, with associated equilibrium path travel

costs: Cp1 = ca + cc = 83, Cp2 = cb + cd = 83.

Assume now that, as depicted in Figure 1, a new link “e”, joining node 2 to node 3 is

added to the original network, with user link cost function ce(fe) = fe + 10. The addition

of this link creates a new path p3 = (a, e, d) that is available to the travelers. Assume that

the travel demand dω1 remains at 6 units of flow. Note that the original flow distribution

pattern xp1 = 3 and xp2 = 3 is no longer an equilibrium pattern, since at this level of flow

the user cost on path p3, Cp3 = ca + ce + cd = 70. Hence, users from paths p1 and p2 would

switch to path p3.

The equilibrium flow pattern on the new network is: x∗
p1

= 2, x∗
p2

= 2, x∗
p3

= 2, with
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equilibrium link flows: f ∗
a = 4, f ∗

b = 2, f ∗
c = 2, f ∗

e = 2, f ∗
d = 4, and with associated

equilibrium user path travel costs: Cp1 = 92, Cp2 = 92. Indeed, one can verify that any

reallocation of the path flows would yield a higher travel cost on a path.

Note that the travel cost increased for every user of the network from 83 to 92 without a

change in the travel demand!

The increase in travel cost on the paths is due, in part, to the fact that in this network

two links are shared by distinct paths and these links incur an increase in flow and associated

cost. Hence, the Braess paradox is related to the underlying topology of the networks and,

of course, to the behavior of the travelers, which here is that of user-optimization. One may

show, however, that the addition of a path connecting an O/D pair that shares no links

with the original O/D pair will never result in the Braess paradox for that O/D pair (cf.

Dafermos and Nagurney (1984)).

Recall that a system-optimizing solution, which corresponds to Wardrop’s (1952) second

principle, is one that minimizes the total cost in the network, and all utilized paths connecting

each O/D pair have equal and minimal marginal total travel costs (cf. (16) and (17)).

The system-optimizing solution for the first network in Figure 1 is: xp1 = xp2 = 3, with

marginal total path costs given by: Ĉ ′
p1

= Ĉ ′
p2

= 116. This would remain the system-

optimizing solution, even after the addition of link e, since the marginal cost of path p3, Ĉ ′
p3

,

at this feasible flow pattern is equal to 130.

The addition of a new link to a network cannot increase the total cost of the network

system, but can, of course, increase a user’s cost since travelers act individually.

3. Models with Asymmetric Link Costs

There has been much research activity in the past several decades in terms of both the

modeling and the development of methodologies to enable the formulation and computation

of more general transportation (and related) network equilibrium models. Examples of

general models include those that allow for multiple modes of transportation or multiple

classes of users (such as computer messages, for example), whose costs on links depend on

the flows in an individual way. In this section, we consider network models in which the user
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cost on a link is no longer dependent solely on the flow on that link. We present a fixed

demand transportation network equilibrium model in Section 3.1 and an elastic demand one

in Section 3.2. In Section 3.1.3 we further elaborate upon the generality of the transportation

network equilibrium concept and formulations and highlight several novel applications.

Assume that user link cost functions are now of a general form, that is, the cost on a link

may depend not only on the flow on the link but on other link flows on the network, that is,

ca = ca(f), ∀a ∈ L. (18)

In the case where the symmetry assumption exists, that is, ∂ca(f)
∂fb

= ∂cb(f)
∂fa

, for all links

a, b ∈ L, one can still reformulate the solution to the network equilibrium problem satis-

fying equilibrium conditions (5) as the solution to an optimization problem (cf. Dafermos

(1972), and the references therein), albeit, again, with an objective function that is artificial

and simply a mathematical device. However, when the symmetry assumption is no longer

satisfied, such an optimization reformulation no longer exists and one must appeal to vari-

ational inequality theory (cf. Kinderlehrer and Stampacchia (1980), Nagurney (1999), and

the references therein). Models of transportation networks with asymmetric cost functions

are important since they allow for the formulation, qualitative analysis, and, ultimately, so-

lution to problems in which the cost on a link may depend on the flow on another link in a

different way than the cost on the other link depends on that link’s flow. Such a generaliza-

tion allows for the more realistic treatment of intersections, two-way links, multiple modes

of transportation as well as distinct classes of users of the network.

It was in the domain of such transportation network equilibrium problems that the theory

of finite-dimensional variational inequalities realized its earliest success, beginning with the

contributions of Smith (1979) and Dafermos (1980). For an introduction to the subject, as

well as applications ranging from transportation network and spatial price equilibrium prob-

lems to financial equilibrium problems, see the book by Nagurney (1999). Below we present

variational inequality formulations of both fixed demand and elastic demand transportation

network equilibrium problems.

The system-optimization problem, in turn, in the case of nonseparable (cf. (18)) user link
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cost functions becomes (see also (12)):

Minimize
∑

a∈L
ĉa(f), (19)

subject to (7)–(9), where ĉa(f) = ca(f) × fa, ∀a ∈ L.

The system-optimality conditions remain as in (16), but now the marginal of the total

cost on a path becomes, in this more general case:

Ĉ ′
p =

∑

a,b∈L

∂ĉb(f)

∂fa

δap, ∀p ∈ P. (20)

3.1 Variational Inequality Formulations of Fixed Demand Problems

As mentioned earlier, in the case where the user link cost functions are no longer sym-

metric, one cannot compute the solution to the U-O, that is, to the network equilibrium,

problem using standard optimization algorithms. We emphasize, again, that such general

cost functions are very important from an application standpoint since they allow for asym-

metric interactions on the network. For example, allowing for asymmetric cost functions

permits one to handle the situation when the flow on a particular link affects the cost on

another link in a different way than the cost on the particular link is affected by the flow on

the other link.

First, the definition of a variational inequality problem is recalled. For further back-

ground, theoretical formulations, derivations, and the proofs of the results below, see the

books by Nagurney (1999) and by Nagurney and Dong (2002a) and the references therein.

We provide the variational inequality of the network equilibrium conditions in path flows as

well as in link flows.

Specifically, the variational inequality problem (finite-dimensional) is defined as follows:

Definition 1: Variational Inequality Problem

The finite-dimensional variational inequality problem, VI(F,K), is to determine a vector

X∗ ∈ K such that

〈F (X∗), X − X∗〉 ≥ 0, ∀X ∈ K, (21)
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Figure 2: Geometric Interpretation of VI(F,K)

where F is a given continuous function from K to RN , K is a given closed convex set, and

〈·, ·〉 denotes the inner product in RN .

Variational inequality (21) is referred to as being in standard form. Hence, for a given

problem, typically an equilibrium problem, one must determine the function F that enters

the variational inequality problem, the vector of variables X, as well as the feasible set K.

The variational inequality problem contains, as special cases, such well-known problems

as systems of equations, optimization problems, and complementarity problems. Thus, it is

a powerful unifying methodology for equilibrium analysis and computation.

A geometric interpretation of the variational inequality problem VI(F,K) is given in

Figure 2. In particular, F (X∗) is “orthogonal” to the feasible set K at the point X∗.

Theorem 1: Variational Inequality Formulation of Network

Equilibrium with Fixed Demands – Path Flow Version

A vector x∗ ∈ K1 is a network equilibrium path flow pattern, that is, it satisfies equilibrium
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conditions (5) if and only if it satisfies the variational inequality problem:

∑

ω∈Ω

∑

p∈Pω

Cp(x
∗) × (x − x∗) ≥ 0, ∀x ∈ K1, (22)

or, in vector form:

〈C(x∗), x − x∗〉 ≥ 0, ∀x ∈ K1, (23)

where C is the nP -dimensional column vector of path user costs and K1 is defined as: K1 ≡
{x ≥ 0, such that (7) holds}.

Theorem 2: Variational Inequality Formulation of Network

Equilibrium with Fixed Demands – Link Flow Version

A vector f ∗ ∈ K2 is a network equilibrium link flow pattern if and only if it satisfies the

variational inequality problem:

∑

a∈L
ca(f

∗) × (fa − f ∗
a ) ≥ 0, ∀f ∈ K2, (24)

or, in vector form:

〈c(f ∗), f − f ∗〉 ≥ 0, ∀f ∈ K2, (25)

where c is the nL-dimensional column vector of link user costs and K2 is defined as: K2 ≡
{f | there exists anx ≥ 0 and satisfying (7) and (8)}.

Note that one may put variational inequality (23) into standard form (21) by letting

F ≡ C, X ≡ x, and K ≡ K1. Also, one may put variational inequality (25) into standard

form where now F ≡ c, X ≡ f , and K ≡ K2. Hence, fixed demand transportation network

equilibrium problems in the case of asymmetric user link cost functions can be solved as

variational inequality problems, as given above.

Alternative variational inequality formulations of a problem are useful in devising other

models, including dynamic versions, as well as for purposes of computation using different

algorithms. In Section 4, we describe the relationship between variational inequality for-

mulations and projected dynamical systems, in which the latter provides the disequilibrium

dynamics prior to the attainment of the equilibrium, as formulated via the former.
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The theory of variational inequalities (see Kinderlehrer and Stampacchia (1980) and

Nagurney (1999)) allows one to qualitatively analyze the equilibrium patterns in terms of

existence, uniqueness, as well as sensitivity and stability of solutions, and to apply rig-

orous algorithms for the numerical computation of the equilibrium patterns. Variational

inequality algorithms usually resolve the variational inequality problem into series of simpler

subproblems, which, in turn, are often optimization problems, which can then be effectively

solved using a variety of algorithms, including the equilibration algorithms of Dafermos and

Sparrow (1969), which exploit network structure as well as the commonly used in practice

Frank-Wolfe (1956) algorithm (see also LeBlanc, Morlok, and Pierskalla (1975)), and the

origin-based algorithm of Ber-Gera (2002), which seems especially suitable for large-scale

transportation networks. In particular, projection methods as well as relaxation methods

(see Dafermos (1980, 1982), Florian and Spiess (1982), Nagurney (1984, 1999), and Patriks-

son (1994)) have been successfully applied to compute solutions to variational inequality

formulations of transportation network equilibrium problems.

We emphasize that the above network equilibrium framework is sufficiently general to also

formalize the entire transportation planning process (consisting of origin selection, or desti-

nation selection, or both, in addition to route selection, in an optimal fashion) as path choices

over an appropriately constructed abstract network or supernetwork. This was recognized

by Dafermos in 1976 (in the context of separable link cost functions) in her development of

integrated transportation network equilibrium models in which location decisions are made

simultaneously to transportation route decisions (see also Boyce (1980)). Further discussion

can be found in that reference as well as in the books by Nagurney (1999, 2000) and Nagur-

ney and Dong (2002a, b) who also developed more general models in which the costs (as

described above) need not be separable nor asymmetric.

It is worth noting that the presentation of the variational inequality formulations of the

fixed demand models given above was in the context of single mode (or single class) transport

networks. However, in view of the generality of the functions considered (cf. (18)), the

modeling framework described above can also be adapted to multimodal/multiclass problems

in which there are multiple modes of transport available and/or multiple classes of users, each

of whom perceives the cost on the links of the network in an individual manner. Dafermos in

(1972) demonstrated how, through a formal model, a multiclass traffic network could be cast
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into a single-class network through the construction of an expanded (and, again, abstract)

network consisting of as many copies of the original network as there were classes. The

application of such a transformation is also relevant to telecommunication networks.

Also, we note that here the focus is on deterministic network equilibrium problems. Some

basic stochastic transportation network equilibrium models can be found in Sheffi (1985).

Dial (1971) developed, apparently, the first stochastic route choice model. Daganzo and

Sheffi (1977), in turn, formulated a stochastic user-optimized traffic network model with

route choice in which the equilibrium criterion could be succinctly stated as no traveler can

improve his or her perceived travel time by unilaterally changing routes.

3.2 Variational Inequality Formulations of Elastic Demand Problems

We now describe a general network equilibrium model with elastic demands due to Dafer-

mos (1982) but we present the single-modal version, for simplicity. It is assumed that one

has associated with each O/D pair ω in the network a travel disutility function λω, where

here the general case is considered in which the disutility may depend upon the entire vector

of demands, which are no longer fixed, but are now variables, that is,

λω = λω(d), ∀ω ∈ Ω, (26)

where d is the J-dimensional column vector of the demands.

The notation, otherwise, is as described earlier, except that here we also consider user

link cost functions which are general, that is, of the form (18). The conservation of flow

equations (see also (1) and (2)), in turn, are given by

fa =
∑

p∈P

xpδap, ∀a ∈ L, (27)

dω =
∑

p∈Pω

xp, ∀ω ∈ Ω, (28)

xp ≥ 0, ∀p ∈ P. (29)

In the elastic demand case, the demands in expression (28) are variables and no longer

given, in contrast to the fixed demand expression in (1).
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Network Equilibrium Conditions in the Case of Elastic Demands

The network equilibrium conditions (see also (5)) take on in the elastic demand case the

following form. For every O/D pair ω ∈ Ω, and each path p ∈ Pω, a vector of path flows

and demands (x∗, d∗) satisfying (28) and (29) (which induces a link flow pattern f ∗ through

(27)) is a network equilibrium pattern if it satisfies:

Cp(x
∗)

{
= λω(d∗), if x∗

p > 0
≥ λω(d∗), if x∗

p = 0.
(30)

Equilibrium conditions (30) state that the costs on used paths for each O/D pair are

equal and minimal and equal to the disutility associated with that O/D pair. Costs on

unutilized paths can exceed the disutility. Observe that in the elastic demand model users

of the network can forego travel altogether for a given O/D pair if the user costs on the

connecting paths exceed the travel disutility associated with that O/D pair. This model,

hence, allows one to ascertain the attractiveness of different O/D pairs based on the ultimate

equilibrium demand associated with the O/D pairs. In addition, this model can handle such

situations as the equilibrium determination of employment location and route selection, or

residential location and route selection, or residential and employment selection as well as

route selection through the appropriate transformations via the addition of links and nodes,

and given, respectively, functions associated with the residential locations, the employment

locations, and the network overall (cf. Dafermos (1976), Nagurney (1999), and Nagurney

and Dong (2002a)).

Note that although the presentation of the elastic demand transportation network model

has been in the case of a single mode of transportation or class of user one can readily (with

an accompanying increase in notation) explicitly introduce distinct modes to the above model

as follows. One needs only to introduce subscripts to denote modes/classes, redefine all of

the above vectors accordingly, and the conservation of flow equations, and state that (30)

then must hold for each mode/class. In other words, in equilibrium, the used paths for a

given mode and O/D pair must have minimal and equal user path costs, which in turn, must

be equal to the travel disutility for that mode and O/D pair at the equilibrium demand. Of

course, as described in the case of fixed demands, one can also have made as many copies as
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there are modes on the network in which case the above single-modal but extended elastic

demand model would be equivalent to the multimodal one.

In the next two theorems, both the path flow version and the link flow version of the

variational inequality formulations of the network equilibrium conditions (30) are presented.

These are analogues of the formulations (22) and (23), and (24) and (25), respectively, for

the fixed demand model, and are due to Dafermos (1982).

Theorem 3: Variational Inequality Formulation of Network

Equilibrium with Elastic Demands – Path Flow Version

A vector (x∗, d∗) ∈ K3 is a network equilibrium path flow pattern, that is, it satisfies equilib-

rium conditions (30) if and only if it satisfies the variational inequality problem:

∑

ω∈Ω

∑

p∈Pω

Cp(x
∗) × (x − x∗) −

∑

ω∈Ω

λω(d∗) × (dω − d∗
ω) ≥ 0, ∀(x, d) ∈ K3, (31)

or, in vector form:

〈C(x∗), x − x∗〉 − 〈λ(d∗), d − d∗〉 ≥ 0, ∀(x, d) ∈ K3, (32)

where λ is the J-dimensional vector of disutilities and K3 is defined as: K3 ≡ {x ≥
0, such that (28) holds}.

Theorem 4: Variational Inequality Formulation of Network

Equilibrium with Elastic Demands – Link Flow Version

A vector (f ∗, d∗) ∈ K4 is a network equilibrium link flow pattern if and only if it satisfies

the variational inequality problem:

∑

a∈L
ca(f

∗) × (fa − f ∗
a ) −

∑

ω∈Ω

λω(d∗) × (dω − d∗
ω) ≥ 0, ∀(f, d) ∈ K4, (33)

or, in vector form:

〈c(f ∗), f − f ∗〉 − 〈λ(d∗), d − d∗〉 ≥ 0, ∀(f, d) ∈ K4, (34)

where K4 ≡ {(f, d), such that there exists anx ≥ 0 satisfying (27), (28)}.
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Figure 3: An Elastic Demand Example

Under the symmetry assumption on the disutility functions, that is, if ∂λw

∂dω
= ∂λω

∂dw
, for all

w, ω, in addition to such an assumption on the user link cost functions (see following (18)),

one can obtain (see Beckmann, McGuire, and Winsten (1956)) an optimization reformulation

of the network equilibrium conditions (30), which in the case of separable user link cost

functions and disutility functions is given by:

Minimize
∑

a∈L

∫ fa

0
ca(y)dy −

∑

ω∈Ω

∫ dω

0
λω(z)dz (35)

subject to: (27)–(29).

We now present an example of an elastic demand transportation network equilibrium

problem with asymmetric user link cost functions.

An Elastic Demand Transportation Network Equilibrium Example

Consider the network depicted in Figure 3 in which there are three nodes: 1, 2, 3; three

links: a, b, c; and a single O/D pair ω1 = (1, 3). Let path p1 = (a, c) and path p2 = (b, c).

Assume that the user link cost functions are:

ca(f) = 4fa + fb + 10, cb(f) = 3fb + 2fa + 20, cc(f) = 2fc + fa + fb + 5,
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and the disutility (or inverse demand) function is given by:

λω1(dω1) = −dω1 + 120.

Observe that in this example, the user link cost functions are non-separable and asym-

metric and, hence, the equilibrium conditions (30) cannot be reformulated as the solution

to an optimization problem, but, rather, as the solution to the variational inequalities (31)

(or (32)), or (33) (or (34)). Hoever, given the simplicity of the network and cost structure

in this simple example, we can solve the equilibrium conditions (30) directly.

The U-O flow and demand pattern that satisfies equilibrium conditions (30) is: x∗
p1

= 10,

x∗
p2

= 5, and d∗
ω1

= 15, with associated link flow pattern: f ∗
a = 10, f ∗

b = 5, f ∗
c = 15. The

incurred user path costs are: Cp1 = Cp2 = 105, which is precisely the value of the disutility

λω1 . Hence, this flow and demand pattern satisfies equilibrium conditions (30). Indeed, both

paths p1 and p2 are utilized and their user paths costs are equal to each other. In addition,

these costs are equal to the disutility associated with the origin/destination pair that the

two paths connect.

It is worth mentioning that policies, in the form of tolls, for example, can be applied to

guarantee that the travellers behave in a manner that, after the imposition of tolls, is also

optimal from a system-optimizing perspective. For some background, see Dafermos (1973),

Nagurney (2000), Lawphongpanich, Hearn, and Smith (2006), and the references therein.

3.3 Other Network Equilibrium Problems and Transportation

Note that the elastic demand model described above is related closely to the well-known

spatial price equilibrium models of Samuelson (1952), Takayama and Judge (1971), and

Florian and Los (1982). Indeed, as demonstrated by Dafermos and Nagurney (1985) in the

context of a single commodity, and, subsequently, by Dafermos (1986) in the case of multiple

commodities, spatial price equilibrium problems are isomorphic to transportation network

equilibrium problems over appropriately constructed networks. Hence, the well-developed

theory of transportation networks can be transferred to the study of commodity flows in

the case of spatial price equilibrium in which the equilibrium production, consumption,

and commodity trade flows are to be determined satisfying the equilibrium conditions that
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there will be a positive flow (in equilibrium) of the commodity between a pair of supply and

demand markets if the supply price at the supply market plus the unit cost of transportation

is equal to the demand price at the demand market. A variety of such models (both static

and dynamic) and associated references can be found in the books by Nagurney (1999) and

Nagurney and Zhang (1996).

Although the focus of this chapter is on transportation network equilibrium models with

a primary focus on an urban setting, models of freight networks are closely related to the

models discussed above. Clearly, in this context, one must distinguish the behavior of the

operators of such networks and model the competition accordingly (see, e.g., Friesz and

Harker (1985)).

As highlighted by Boyce, Mahmassani, and Nagurney (2005), Beckmann, McGuire, and

Winsten (1956) explicitly recognized the generality of networks as a means of conceptualizing

even decision-making of a firm, with routes corresponding to production processes and the

links corresponding to transformations as the material moves down the route from the origin

to the destination. The routes abstracted the choices or production possibilities available

to a firm. For example, Beckmann, McGuire, and Winsten (1956) (p. 88) provided an

analogy of transportation networks to the theory of a firm as follows “consider a chemical or

metallurgical material which is capable of various stages or modifications, and a firm which

undertakes to transform it from certain stages to certain other stages .... Here the stages of

the material correspond to locations, the transitions correspond to roads, and sequences of

transformation processes ... of the material – that is, the production methods – correspond

to routes.” This description closely captures another related application in which the concept

of network equilibrium is garnering interest and that is that of supply chain networks. The

study of supply chain networks is interdisciplinary by nature since such networks contain

aspects of manufacturing, retailing, transportation, economics, as well as operations research

and management science.

Nagurney, Dong, and Zhang (2002) were the first to utilize network equilibrium concepts

in the context of supply chain applications. In their model, decision-makers, now located at

the nodes of the network, are faced with their individual objective functions, which can in-

clude profit-maximization, and they seek to determine not only the optimal/equilibrium flows
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between tiers of nodes but also the prices of the product at the various tiers. The model

therein was, subsequently, generalized to include electronic commerce by Nagurney, Loo,

Dong, and Zhang (2002). Nagurney (2006a) proved that supply chain network equilibrium

problems could be transformed and solved as transportation network equilibrium problems

and novel interpretations of the underlying equilibrium conditions given in terms of paths and

path flows. More recently, Nagurney and Liu (2005) and Wu, Nagurney, Liu, and Stranlund

(2006) proved, as hypothesized in Beckmann, McGuire, and Winsten (1956), that electric

power generation and distribution networks could also be tranformed into transportation

network equilibrium problems, thus resolving a hypothesis that was open for over 50 years.

Finally, Liu and Nagurney (2006) established that financial networks with intermediation

could also be transformed into transportation networks over appropriately constructed ab-

stract networks or supernetworks. Zhang, Dong, and Nagurney (2003), in turn, generalized

Wardrop’s principle(s) to consider not only routes but chains in the network to identify the

“winning” supply chains. In that context, routes correspond to production processes and

links can be either operation or interface links. Their framework allows for the modeling of

competition between supply chains, which may entail several firms (producing, transporting,

retailing, etc.).

Hence, tools developed for transportation network equilibrium problems, as briefly over-

viewed above can be transferred into such important application domains as electric power

networks as well as financial network plus supply chain networks. Such networks, together

with transportation and telecommunication networks, form some of what are known as “crit-

ical infrastructure” networks since their functioning are so essential to our modern societies

and economies. Further discussion of a spectrum of multitiered, complex network problems

with many decision-makers and a variety of applications, with direct relationships to trans-

portation network equilibrium problems, can be found in the book by Nagurney (2006b).
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4. Dynamics

In this Section, we summarize briefly how projected dynamical systems theory can be

applied to the elastic demand transportation network equilibrium problem presented in Sec-

tion 3 in order to provide the disequilibrium dynamics. The presentation here follows the

corresponding one in Nagurney (2004). Dupuis and Nagurney (1993) proved that, given

a variational inequality problem, there is a naturally associated dynamical system, the set

of stationary points of which coincides precisely with the set of solutions of the variational

inequality problem. The dynamical system, termed a projected dynamical system by Zhang

and Nagurney (1995), is non-classical in that its right-hand side, which is a projection op-

erator, is discontinuous. Nevertheless, it can be qualitatively analyzed and approximated

through discrete-time algorithms as described in Dupuis and Nagurney and also in the book

by Nagurney and Zhang (1996). Importantly, projected dynamical systems theory provides

insights into the travelers’ dynamic behavior in making their trip decisions and in adjusting

their route choices. Moreover, it provides for a powerful theory of stability analysis (cf.

Zhang and Nagurney (1996, 1997)). Other approaches to dynamic transportation network

problems can be found in Ran and Boyce (1996) and Mahmassani et al (1993). In particular,

here we focus on the disequilibrium dynamics and on what can be viewed as the day to day

adjustment until an equilibrium is reached.

Since users on a network select paths so as to reach their destinations from their origins,

we consider variational inequality (32) as the basic one for the dynamical system equivalence.

Specifically, we note that, in view of constraint (28), one may define λ̂(x) ≡ λ(d), in which

case we may rewrite variational inequality (32) in the path flow variables x only, that is, we

seek to determine x∗ ∈ RnP
+ , such that

〈C(x∗) − λ̄(x∗), x − x∗〉 ≥ 0, ∀x ∈ RnP
+ , (36)

where λ̄(x) is the nPω1
,×nPω2

× . . . nPωJ
-dimensional column vector with components:

(λ̂ω1(x), . . . , λ̂ω1(x), . . . , λ̂ωJ
(x), . . . , λ̂ωJ

(x)),

If we now let X ≡ x and F (X) ≡ C(x) − λ̄(x) and K ≡ {x|x ∈ RnP
+ }, then, clearly,

(36) can be put into standard form given by (23). The dynamical system, first presented
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by Dupuis and Nagurney (1993), whose stationary points correspond to solutions of (36), is

given by:

ẋ = ΠK(x, λ̄(x) − C(x)), x(0) = x0 ∈ K, (37)

where the projection operator ΠK(x, v) is defined as:

ΠK(x, v) = lim
δ→0

(PK(x + δv) − x)

δ
, (38)

and

PK = argminz∈K‖z − x‖. (39)

The dynamics described by (37) are as follows: the rate of change of flow on a path

connecting an O/D pair is equal to the difference between the travel disutility for that O/D

pair and the cost on that path at that instance in time. If the path cost exceeds the travel

disutility, then the flow on the path will decrease; if it is less than the disutility, then the

flow on that path will increase. The projection operator in (37) guarantees that the flow

on the paths will not be negative, since this would violate feasibility. Hence, the path flows

(and incurred travel demands) evolve from an initial path flow pattern at time zero given by

x(0) until a stationary point is reached, that is, when ẋ = 0; at which point we have that

for that particular x∗:

ẋ = 0 = ΠK(x∗, λ̄(x∗) − C(x∗)), (40)

and that x∗ also solves variational inequality (36) and is, hence, a transportation network

equilibrium satisfying the elastic demand equilibrium conditions (30).

Qualitative properties of the dynamic trajectories, as well as conditions for stability of

the solutions as well as discrete-time algorithms can be found in Zhang and Nagurney (1995)

and in Nagurney and Zhang (1996) and the references therein. In particular, we note that

discrete-time algorithms such as those proposed in Nagurney and Zhang (1996) and the

references therein provide for a time discretization of the continuous time trajectories and

may also be interpreted as discrete-time adjustment processes.

In addition, dynamic but within day transportation network models (deterministic as well

as stochastic) have received a lot of attention; see Ran and Boyce (1996) and the references

therein.
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For discussions of dynamic supply chain networks including electric power generation and

distribution networks, as well as extensions of the above results to evolutionary variational

inequality theory and double-layered dynamics, see Nagurney (2006b) and the references

therein.

5. A Transportation Network Efficiency Measure and the Importance of Network

Components

In this chapter, we have focused on mathematical economic models of transportation and

the relationship of such models to other network domains. We now further relate trans-

portation networks to some of the complex network literature, a topic, which has been the

subject of intense research activity in recent years although the topic, which is based on

graph theory, is centuries old, as we note above. Indeed, the subject of networks, with

its rich applications has been tackled by economists, applied mathematicians, physicists,

engineers, biologists, and sociologists; see, for additional examples: Ahuja, Magnanti, and

Orlin (1993), Watts and Strogatz (1998), Barabási and Albert (1999), Latora and Marchiori

(2001), Newman (2003), Roughgarden (2005), and the references therein. Three types of

“networks,” whose study has developed more recently and without much interaction with

flow-based, behavioral transportation modeling, and which have received intense attention,

especially in regards to the development of network measures, are: the random network

model, due to Erdös-Rényi (1960), the small-world model (cf. Watts and Strogatz (1998)),

and scale-free networks (Barabási and Albert (1999)).

The importance of studying and identifying the vulnerable components of a network has

been linked to events such as 9/11 and to Hurricane Katrina, as well as to the biggest blackout

in North America that occurred on August 14, 2003 (cf. Sheffi (2005), Nagurney (2006b)).

In order to hedge against terrorism and natural disasters, a majority of the associated com-

plex network (sometimes also referred to as network science) literature (cf. the survey by

Newman (2003)) focuses on the graph characteristics (e.g. connectivity between nodes) of

the associated application in order to evaluate the network reliability and vulnerability; see

also, for example, Chassin and Posse (2005) and Holme et al. (2002).

As noted in Nagurney and Qiang (2007), in order to be able to evaluate the vulner-
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ability and the reliability of a network, a measure that can quantifiably capture the effi-

ciency/performance of a network must be developed. For example, in a series of papers, be-

ginning in 2001, Latora and Marchiori discussed the network performance issue by measuring

the “global efficiency” in a weighted network as compared to that of the simple non-weighted

small-world network. In a weighted network, the network is not only characterized by the

edges that connect different nodes, but also by the weights associated with different edges

in order to capture the relationships between different nodes. The network efficiency E of a

network G is defined in the paper of Latora and Marchiori (2001) as E = 1
n(n−1)

∑
i 6=j∈G

1
dij

,

where n is the number of nodes in G and dij is the shortest path length (the geodesic dis-

tance) between nodes i and j. This measure has been applied by the above authors to a

variety of networks, including the (MBTA) Boston subway transportation network and the

Internet (cf. Latora and Marchiori (2002), (2004)).

Although the topological structure of a network obviously has an impact on network

performance and the vulnerability of the network, clearly, the above discussions argue that

the flow on a network is also an important indicator, as are the induced costs, and the

behavior of users of the network(s). Indeed, flows represent the usage of a network and

which paths and links have positive flows and the magnitude of these flows are relevant in

the case of network disruptions. Interestingly, although recently a few papers have appeared

in the complex network literature that emphasize flows on a transportation network, with

a focus on airline networks (cf. Barrat, Barthélemy, and Vespignani (2005), and Dall’Asta

et al. (2006)), the aforementioned papers only consider the importance of nodes and not

that of links and ignore the behavior of users. A network efficiency measure that captures

flows, the costs associated with “travel,” and user behavior, along with the network topology,

is more appropriate in evaluating networks such as transportation networks, which are the

classical critical infrastructure. Indeed, in the case of disruptions, which can affect either

nodes, or links, or both, we can expect travelers to readjust their behavior and the usage of

the network accordingly. Furthermore, as noted by Jenelius, Petersen, and Mattsson (2006),

the criticality of a network component, consisting of a node, link, or combination of nodes

and links, is related to the vulnerability of the network system in that the more critical (or,

as we consider, the more important) the component, the greater the damage to the network

system when this component is removed, be it through natural disasters, terrorist attacks,
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structural failures, etc.

We now describe a new transportation network performance measure that can be used to

evaluate the efficiency of a transportation network as well as the importance of its network

components. It contains the Latora and Marchiori (2001) measure used in the “complex”

network literature, as a special case. The measure, due to Nagurney and Qiang (2007),

has the additional notable feature that it is applicable, as is the accompanying importance

definition of network components, even in the case that the network becomes disconnected

(after the removal of the component).

Definition 2: A Transportation Network Efficiency Measure (Nagurney and

Qiang (2007))

The network transportation efficiency measure, E(G, d), for a given network topology G and

vector of O/D demands, d, is defined as follows:

E = E(G, d) =

∑
ω∈Ω

dω

λω

J
, (41)

where λω denotes the cost on the minimum cost (shortest) used path(s), that is, ones with

positive flow, connecting O/D pair ω and J is the number of O/D pairs in the network.

As emphasized in Nagurney and Qiang (2007), the transportation network efficiency

measure given in (41) has a meaningful economic interpretation which is that the efficiency

of a transportation network is equal to the average, in terms of O/D pairs, traffic to price

ratio with the traffic per O/D pair being given by dω and the equilibrium price of travel

between O/D pair ω by λω (cf. (5) and (30)). The higher the traffic that can be handled at

a given price (which also reflects the cost and, from an engineering perspective, the travel

time), the higher the efficiency or performance of the transportation network.

Interestingly, the following theorem demonstrates that, under appropriate assumptions,

the Nagurney and Qiang (N-Q) (2007) measure contains, as a special case, the network

efficiency measure of Latora and Marchiori (L-M) (2001), which, however, considered neither

flows nor demands and did not incorporate any underlying users’ behavior.
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Theorem 5 (Nagurney and Qiang (2007))

If the demand for each pair of nodes is equal to 1 and dij is set equal to λω, where ω = (i, j),

then the proposed network efficiency measure and the Latora and Marchiori (2001) measure

are one and the same.

Proof: Let n be number of nodes in G. Therefore, the total number of O/D pairs, J , in

principle, can be assumed to be equal to n(n−1). Furthermore, by the assumption, we have

dω = 1, ∀ω ∈ Ω, where Ω is the set of all O/D pairs in G, and ω = (i, j) and dij = λω, where

i 6= j, ∀i, j ∈ G. Then the measure in (41) becomes as follows:

E(G, d) =

∑
ω∈Ω

dω

λω

J
=

∑
i 6=j∈G

1
dij

J
=

1

n(n − 1)

∑

i 6=j∈G

1

dij
. (42)

2

Observe that, from the definition, λω is the value of the cost of the minimum or “shortest”

used paths for O/D pair ω and dij, according to Latora and Marchiori (2001), is the shortest

path length (the geodesic distance) between nodes i and j. Therefore, the assumption of λω

being equal to dij is not unreasonable. The Nagurney and Qiang (2007) measure, however,

is a more general measure which also captures flows and behavior on the network, according

to Definition 2.

With the new transportation network efficiency measure, we can investigate the impor-

tance of network components by studying their impact on the transportation network effi-

ciency through their removal. The importance of a node or a link (or a subset of nodes and

links) is defined as follows:

Definition 3: Importance of a Network Component (Nagurney and Qiang (2007))

The importance, I(g) of a network component g ∈ G, is measured by the relative network

efficiency drop after g is removed from the network:

I(g) =
4E
E =

E(G, d) − E(G − g, d)

E(G, d)
, (43)

where G − g is the resulting network after component g is removed from network G.
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The upper bound of the importance of a network component is 1.

The elimination of a link is treated in the N-Q measure by removing that link while the

removal of a node is managed by removing the links entering or exiting that node. In the case

that the removal results in no path connecting an O/D pair, we simply assign the demand for

that O/D pair to an abstract path with a cost of infinity. This measure is well-defined even in

the case of disconnected networks. Notably, Latora and Marchiori (2001) also mention this

important characteristic which gives their measure an attractive property over the measure

used for the small-world network model (cf. Watts and Strogatz (1998)).

An Example

Consider the network in Figure 4 in which there are two O/D pairs: ω1 = (1, 2) and ω2 =

(1, 3) with demands given, respectively, by dω1 = 100 and dω2 = 20. We have that path p1 = a

and path p2 = b. Assume that the link cost functions are given by: ca(fa) = .01fa + 19

and cb(fb) = .05fb + 19. Clearly, we must have that x∗
p1

= 100 and x∗
p2

= 20 so that

λω1 = λω2 = 20. The network efficiency measure E = 3 whereas the L-M measure E = .0167.

��������
2 3
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a b

Figure 4: Example

The importance and the rankings of the links and the nodes for the Example are given,

respectively, in Tables 2 and 3, using the importance measures.

The Nagurney and Qiang (2007) measure, which captures flow information is more gen-

eral, reasonable, and precise since, in the case of a disruption, the destruction of link a,

with which was associated a flow 5 times the flow of link b, would result in a greater loss of

efficiency! The same qualitative analysis holds for the destruction of node 2 versus node 3.

Additional examples can be found in Nagurney and Qiang (2007).
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Table 2: Importance and Ranking of Links in the Example

Link Importance Value Importance Ranking Importance Value Importance Ranking
N-Q Measure N-Q Measure L-M Measure L-M Measure

a 0.83 1 0.5 1
b 0.17 2 0.5 1

Table 3: Importance and Ranking of Nodes in the Example

Node Importance Value Importance Ranking Importance Value Importance Ranking
N-Q Measure N-Q Measure L-M Measure L-M Measure

1 1.00 1 1.00 1
2 0.83 2 0.50 2
3 0.17 3 0.50 2

This transportation network efficiency measure can be applied to other transportation-

related networks, including such critical infrastructure networks as the Internet, electric

power generation and distribution networks, supply chains, as well as a variety of financial

networks. Indeed, it can be used to identify not only the critical components in a given

network but also to assist decision-makers as to which components should be better secured;

see, e.g., Nagurney and Qiang (2007b).

6. Conclusions

This chapter has overviewed the major developments in the mathematical economic mod-

eling of transportation and has also identified some of the significant connections between

transportation networks and other network applications. Such relevant behavioral principles

as user-optimization versus system-optimization were discussed and illustrated through the

Braess paradox. Increasingly complex and general transportation network models were de-

scribed, beginning with the fixed demand transportation network model (both user-optimized

and system-optimized versions) with separable user link cost functions through the elastic

demand transportation network equilibrium model with asymmetric user link cost and travel

disutility functions. Discussions of optimization theory, variational inequality theory, and
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projected dynamical systems theory for network dynamics were also presented, as relevant to

transportation network problems. In addition, a transportation network efficiency measure

was reviewed, along with the importance identification of network components, that is, the

nodes and links. Throughout this chapter examples were provided for illustrative purposes.

Finally, related applications to the Internet, supply chains, as well as electric power gen-

eration and distribution networks and financial networks were noted. This chapter vividly

demonstrates the essential importance of transportation networks and their rigorous study

to both theoretical advances and practice.
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Barrat, A., Barthélemy, M., and Vespignani, A. (2005), “The Effects of Spatial Constraints

on the Evolution of Weighted Complex Networks,” Journal of Statistical Mechanics, Article

No. P05003.

Bass, T. (1992), “Road to Ruin,” Discover , May, 56-61.

Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (1993), Nonlinear Programming: Theory

and Algorithms, second edition, John Wiley & Sons, New York.

Beckmann, M. J., McGuire, C. B., and Winsten, C. B. (1956), Studies in the Economics of

Transportation, Yale University Press, New Haven, Connecticut.

Bertsekas, D. P., and Gallager, R. (1992), Data Networks, second edition, Prentice-Hall,

Englewood Cliffs, New Jersey.

Boyce, D. E. (1980), “A Framework for Constructing Network Equilibrium Models of Urban

Location,” Transportation Science 14, 77-96.

Boyce, D. E., Chon, K. S., Lee, Y. J., Lin, K. T., and LeBlanc, L. J. (1983), “Implementation

and Computational Issues for Combined Models of Location, Destination, Mode, and Route

Choice,” Environment and Planning A 15, 1219-1230.

Boyce, D. E., LeBlanc, L. J., and Chon, K. S. (1988), “Network Equilibrium Models of

Urban Location and Travel Choices: A Retrospective Survey,” Journal of Regional Science

28, 159-183.

Boyce, D. E., Mahmassani, H. S., and Nagurney, A. (2005), “A Retrospective on Beckmann,

McGuire, and Winsten’s Studies in the Economics of Transportation,” Papers in Regional

Science 84, 85-103.

Braess, D. (1968), “Uber ein Paradoxon der Verkehrsplanung,” Unternehmenforschung 12,

258-268.

Braess, D., Nagurney, A., and Wakolbinger, T. (2005), “On a Paradox of Traffic Planning,”

Translation of the Original D. Braess Paper from German to English,” Transportation Science

37



39, 446-450.

Chassin, D. P., and Posse, C. (2005), “Evaluating North American Electric Grid Reliability

using the Barabási-Albert Network Model,” Physica A 355, 667-677.

Cohen, J., and Kelley, F. P. (1990), “A Paradox of Congestion on a Queuing Network,”

Journal of Applied Probability 27, 730-734.

Dafermos, S. C. (1972), “The Traffic Assignment Problem for Multimodal Networks,” Trans-

portation Science 6, 73-87.

Dafermos, S. C. (1973), “Toll Patterns for Multi-class User Transportation Networks,” Trans-

portation Science 7, 211-223.

Dafermos, S. C. (1976), “Integrated Equilibrium Flow Models for Transportation Planning,”

in Traffic Equilibrium Methods, Lecture Notes in Economics and Mathematical Systems 118,

pp. 106-118, M. A. Florian, editor, Springer-Verlag, New York.

Dafermos, S. (1980), “Traffic Equilibrium and Variational Inequalities,” Transportation Sci-

ence 14, 42-54.

Dafermos, S. (1982), “The General Multimodal Network Equilibrium Problem with Elastic

Demand,” Networks 12, 57-72.

Dafermos, S. (1986), “Isomorphic Multiclass Spatial Price and Multimodal Traffic Network

Equilibrium Models,” Regional Science and Urban Economics 16, 197-209.

Dafermos, S., and Nagurney, A. (1984), “On Some Traffic Equilibrium Theory Paradoxes,”

Transportation Research B 18, 101-110.

Dafermos, S., and Nagurney, A. (1985), “Isomorphism Between Spatial Price and Traffic

Network Equilibrium Models,” LCDS #85-17, Lefschetz Center for Dynamical Systems,

Brown University, Providence, Rhode Island.

Dafermos, S. C., and Sparrow, F. T. (1969), “The Traffic Assignment Problem for a General

Network,” Journal of Research of the National Bureau of Standards 73B, 91-118.

38



Daganzo, C. F., and Sheffi, Y. (1977), “On Stochastic Models of Traffic Assignment,” Trans-

portation Science 11, 253-174.
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Erdös, P., and Rényi, A. (1960), “On the Evolution of Random Graphs,” Public Mathemat-

ical Institute of Hungary Academy of Sciences 5, 17-61.

Florian, M., editor (1976), Traffic Equilibrium Methods, Lecture Notes in Economics and

Mathematical Systems 118, Springer-Verlag, New York.

Florian, M., editor (1984), Transportation Planning Models North Holland, Amsterdam, The

Netherlands.

Florian, M. (1986), “Nonlinear Cost Network Models in Transportation Analysis,” Mathe-

matical Programming Study 26, 167-196.

Florian, M., and Hearn, D. (1995), “Network Equilibrium Models and Algorithms,” in Net-

work Routing, Handbooks in Operations Research and Management Science 8, pp. 485-550,

M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, editors, Elsevier Science,

Amsterdam, The Netherlands.

Florian, M., and Los, M. (1982), “A New Look at Static Spatial Price Equilibrium Models,”

Regional Science and Urban Economics 12, 579-597.

Florian, M., and Spiess, H. (1982), “The Convergence of Diagonalization Algorithms for

39



Asymmetric Network Equilibrium Problems,” Transportation Research B 16, 447-483.

Frank, M. and Wolfe, P. (1956), “An Algorithm for Quadratic Programming,” Naval Research

Logistics Quarterly 3, 95-110.

Friesz, T. L., and Harker, P. T. (1985), “Freight Network Equilibrium: A Review of the

State of the Art,” in Analytical Studies in Transportation Economics, A. F. Daughety, editor,

Cambridge University Press, Cambridge, England, pp. 161-206,.

Gendreau, M., and Marcotte, P., editors (2002), Transportation and Network Analysis: Cur-

rent Trends: Miscellanea in Honor of Michael Florian, Kluwer Academic Publishers, Boston,

Massachusetts.

Holme, P., Kim, B. J., Yoon, C. N., and Han, S. K. (2002), “Attack Vulnerability of Complex

Networks,” Phys. Rev. E 65, Article No. 056109.

Jenelius, E., Petersen, T., and Mattsson, L. (2006), “Importance and Exposure in Road

Network Vulnerability Analysis,” Transportation Research A 40, 537-560.

Kinderlehrer, D., and Stampacchia, G. (1980), An Introduction to Variational Inequalities

and Their Applications, Academic Press, New York.

Knight, F. H. (1924), “Some Fallacies in the Interpretation of Social Cost,” Quarterly Journal

of Economics 38, 582-606.

Kohl, J. G. (1841), “Der Verkehr und die Ansiedelungen der Menschen in ihrer Abhangigkeit

von der Gestaltung der Erdoberflache,” Arnold, Dresden, Germany.

Kolata, G. (1990), “What if They Closed 42nd Street and Nobody Noticed?” The New York

Times, December 25, C1.

Korilis, Y. A., Lazar, A. A., and Orda, A. (1999), “Avoiding the Braess Paradox in Non-

Cooperative Networks,” Journal of Applied Probability 36, 211-222.

Kuhn, H. W., and Tucker, A. W. (1951), “Nonlinear Programming,” in Proceedings of Sec-

ond Berkeley Symposium on Mathematical Statistics and Probability , J. Neyman, editor,

40



University of California Press, Berkeley, California, pp. 481-491.

Latora, V., and Marchiori, M. (2001), “Efficient Behavior of Small-world Networks,” Physical

Review Letters 87, Article No. 198701.

Latora, V., and Marchiori, M. (2002), “Is the Boston Subway a Small-world Network? Phys-

ica A 314, 109-113.

Latora, V., and Marchiori, M. (2004), “How the Science of Complex Networks can Help

Developing Strategies Against Terrorism,” Chaos, Solitons and Fractals 20, 69-75.

Lawphongpanich, S., Hearn, D. W., and Smith, M. J., editors, (2006), Mathematical and

Computational Models for Congestion Pricing , Springer, New York.

LeBlanc, L. J., Morlok, E. K., and Pierskalla, W. P. (1975), “An Efficient Approach to Solv-

ing the Road Network Equilibrium Traffic Assignment Problem,” Transportation Research

9, 309-318.

Lesort, J. B., editor (1996), Transportation and Traffic Theory , Elsevier, Oxford, England.

Liu, Z., and Nagurney, A. (2006), “Financial Networks with Intermediation and Transporta-

tion Network Equilibria: A Supernetwork Equivalence and Reinterpretation of the Equilib-

rium Conditions with Computations,” Computational Management Science, in press.

Mahmassani, H. S., editor (2005), Transportation and Traffic Theory , Elservier, Amsterdam,

The Netherlands.

Mahmassani, H. S., Peeta, S., Hu, T. Y., and Ziliaskopoulos, A. (1993), “Dynamic Traffic

Assignment with Multiple User Classes for Real-Time ATIS/ATMS Applications,” in Large

Urban Systems, Proceedings of the Advanced Traffic Management Conference, pp. 91-114,

Federal Highway Administration, US Department of Transportation, Washington, DC.

Marcotte, P., and Nguyen, S., editors (1998), Equilibrium and Advanced Transportation

Modelling , Kluwer Academic Publishers, Boston, Massachusetts.

Nagurney, A. (1984), “Computational Comparisons of Algorithms for General Asymmetric

41



Traffic Equilibrium Problems with Fixed and Elastic Demands,” Transportation Research B

18, 469-485.

Nagurney, A. (1999), Network Economics: A Variational Inequality Approach, second and

revised edition, Dordrecht, The Netherlands.

Nagurney, A. (2000), Sustainable Transportation Networks, Edward Elgar Publishers, Chel-

tenham, England.

Nagurney, A. (2004), “Spatial Equilibration in Transport Networks,” in Handbook of Trans-

port Geography and Spatial Systems, D. A. Hensher, K. J. Button, K. E. Haynes, and P. R.

Stopher, editors, Elsevier, Amsterdam, The Netherlands, pp. 583-608.

Nagurney, A. (2006a), “On the Relationship between Supply Chain and Transportation Net-

work Equilibria: A Supernetwork Equivalence with Computations,”Transportation Research

E 42, 293-316.

Nagurney, A. (2006b), Supply Chain Network Economics: Dynamics of Prices, Flows, and

Profits, Edward Elgar Publishing, Cheltenham, England.

Nagurney, A., and Dong, J. (2002a), Supernetworks: Decision-Making for the Information

Age, Edward Elgar Publishers, Cheltenham, England.

Nagurney, A., and Dong, J. (2002b), “Urban Location and Transportation in the Informa-

tion Age: A Multiclass, Multicriteria Network Equilibrium Perspective,” Environment &

Planning B 29, 53-74.

Nagurney, A., Dong, J., and Mokhtarian, P. L. (2002a), “Teleshopping versus Shopping: A

Multicriteria Network Equilibrium Framework,” Mathematical and Computer Modelling 34,

783-798.

Nagurney, A., Dong, J., and Mokhtarian, P. L. (2002b), “Multicriteria Network Equilibrium

Modeling with Variable Weights for Decision-Making in the Information Age with Applica-

tions to Telecommuting and Teleshopping,” Journal of Economic Dynamics and Control 26,

1629-1650.

42



Nagurney, A., Dong, J., and Zhang, D. (2002), “A Supply Chain Network Equilibrium

Model,”Transportation Research E 38, 281-303.

Nagurney, A., and Liu, Z. (2005), “Transportation Network Equilibrium Reformulations of

Electric Power Supply Chain Networks with Computations,” Isenberg School of Manage-

ment, University of Massachusetts, Amherst, Massachusetts.

Nagurney, A., Loo, J., Dong, J., and Zhang, D. (2002), “Supply Chain Networks and Elec-

tronic Commerce: A Theoretical Perspective,” Netnomics 4, 187-220.

Nagurney, A., and Qiang, Q. (2007), “A Transportation Network Efficiency Measure that

Captures Flows, Behavior, and Costs with Applications to Network Component Impor-

tance Identification and Vulnerability,” Isenberg School of Management, University of Massa-

chusetts, Amherst, Massachusetts; accepted for the POMS Conference, Dallas, Texas, May

4-7, 2007.

Nagurney, A., and Qiang, Q. (2007b), “A Network Efficiency Measure with Applications to

Critical Infrastructure Networks,” to appear in Journal of Global Optimization.

Nagurney, A., Parkes, D., and Daniele, P. (2006), “The Internet, Evolutionary Variational

Inequalities, and the Time-Dependent Braess Paradox,” Computational Management Sci-

ence, in press.

Nagurney, A., and Zhang, D. (1996), Projected Dynamical Systems and Variational Inequal-

ities with Applications, Kluwer Academic Publishers, Boston, Massachusetts.

Nash, J. F. (1950), “Equilibrium Points in N-person Games,” Proceedings of the National

Academy of Sciences 36, 48-49.

Nash, J. F. (1951), “Noncooperative Games,” Annals of Mathematics 54, 286-298.

Newman, M. (2003), “The Structure and Function of Complex Networks,” SIAM Review

45, 167-256.

Patriksson, M. (1994), The Traffic Assignment Problem – Models and Methods, VSP, BV,

43



Utrecht, The Netherlands.

Pigou, A. C. (1920), The Economics of Welfare, Macmillan, London, England.

Ran, B., and Boyce, D. E. (1996), Modeling Dynamic Transportation Networks, Springer-

Verlag, Berlin, Germany.

Roughgarden, T. (2005), Selfish Routing and the Price of Anarchy , MIT Press, Cambridge,

Massachusetts.

Samuelson, P. A. (1952), “Spatial Price Equilibrium and Linear Programming,” American

Economic Review 42, 283-303.

Sheffi, Y. (1985), Urban Transportation Networks: Equilibrium Analysis with Mathematical

Programming Methods, Prentice-Hall, Englewood Cliffs, New Jersey.

Sheffi, Y. (2005), The Resilient Enterprise: Overcoming Vulnerability for Competitive Ad-

vantage, MIT Press, Cambridge, Massachusetts.

Smith, M. J. (1979), “Existence, Uniqueness, and Stability of Traffic Equilibria,” Trans-

portation Research B 13, 259-304.

Takayama, T., and Judge, G. G. (1971), Spatial and Temproal Price and Allocation Models,

North-Holland, Amsterdam, The Netherlands.

Taylor, M. A. P., editor (2002), Transportation and Traffic Theory in the 21st Century ,

Pergamon Press, Amsterdam, The Netherlands.

Taylor, M. A., and D’este, G. M. (2004), “Critical Infrastructure and Transport Network

Vulnerability: Developing a Method for Diagnosis and Assessment,” in Proceedings of the

Second International Symposium on Transportation Network Reliability (INSTR), A. Nichol-

son and A. Dantas, editors, Christchurch, New Zealand, pp. 96-102.

Vidal, J. (2006), “Heat and Soul of the City,” The Guardian, November 1.

Volmuller, J., and Hamerslag, R., editors (1984), Proceedings of the Ninth International Sym-

44



posium on Transportation and Traffic Theory , VNU Science Press, Utrecht, The Netherlands.

Wardrop, J. G. (1952), “Some Theoretical Aspects of Road Traffic Research,” Proceedings

of the Institute of Civil Engineers, Part II, pp. 325-378.

Watts, D. J., and Strogatz, S. H. (1998), “Collective Dynamics of “Small-world” Networks,”

Nature 393, 440-442.

Wu, J. H., Florian, M., and He, S. G. (2000), “EMME/2 Implementation of the SCAG-II

Model: Data Structure, System Analysis and Computation,” submitted to the Southern

California Association of Governments, INRO Solutions Internal Report, Montreal, Quebec,

Canada.

Wu, K., Nagurney, A., Liu, Z., and Stranlund, J. K. (2006), “Modeling Generator Power

Plant Portfolios and Pollution Taxes in Electric Power Supply Chain Networks: A Trans-

portation Network Equilibrium Transformation,” Transportation Research D 11, 171-190.

Zhang, D., Dong, J., and Nagurney, A. (2003), “A Supply Chain Network Economy: Mod-

eling and Qualitative Analysis,” in Innovations in Financial and Economic Networks, A.

Nagurney, editor, Edward Elgar Publishing, Cheltenham, England, pp. 195-211.

Zhang, D., and Nagurney, A. (1995), “On the Stability of Projected Dynamical Systems,”

Journal of Optimization Theory and Applications 85, 97-124.

Zhang, D., and Nagurney, A. (1996), “On the Local and Global Stability of a Travel Route

Choice Adjustment Process,” Transportation Research B 30, 245-262.

Zhang, D., and Nagurney, A. (1997), “Formulation, Stability, and Computation of Traffic

Network Equilibria as Projected Dynamical Systems,” Journal of Optimization Theory and

Applications 93, 417-444.

Biographical Sketch

Anna Nagurney is the John F. Smith Memorial Professor in the Department of Finance

and Operations Management in the Isenberg School of Management at the University of

45



Massachusetts at Amherst. She is also an Affiliated Faculty Member of the Department

of Mechanical and Industrial Engineering and the Department of Civil and Environmental

Engineering at the University of Massachusetts at Amherst. She is the Founding Director

of the Virtual Center for Supernetworks and the Supernetworks Laboratory for Computa-

tion and Visualization at the University of Massachusetts at Amherst. She received an AB

degree in Russian Language and Literature in 1977, the ScB degree in 1977, the ScM in

1980, and the PhD degree in 1983, all in Applied Mathematics, and all from Brown Uni-

versity in Providence, Rhode Island. She devotes her career to education and research that

combines operations research/management science, economics, and engineering. Her focus

is the applied and theoretical aspects of decision-making on network systems, particularly

in the areas of transportation and logistics, energy and the environment, and economics and

finance. Her most recent book is Supply Chain Network Economics: Dynamics of Prices,

Flows, and Profits published in 2006. She has authored or co-authored 8 other books in-

cluding Supernetworks: Decision-Making for the Information Age and Network Economics:

A Variational Inequality Approach, and more than 120 refereed journal articles.

She has given invited talks in Sweden, New Zealand, China, Germany, Italy, Canada,

Australia, Cyprus, Iceland, the US, and other countries and her research has garnered funding

from many foundations, including the National Science Foundation. Among the honors she

has received are: the University of Massachusetts Award for Outstanding Accomplishments

in Research and Creative Activity, an INFORMS Moving Spirit Award, a Science Fellowship

at the Radcliffe Institute for Advanced Study at Harvard University, a Rockefeller Foundation

Bellagio Center Research Team Fellowship, a Distinguished Fulbright Chair at the University

of Innsbruck, Austria, two ATT Foundation Industrial Ecology Fellowships, the Chancellor’s

Medal from the University of Massachusetts, an Eisenhower Faculty Fellowship, a National

Science Foundation Faculty Award for Women, a Faculty Fellowship from the University of

Massachusetts, and the Kempe Prize from the University of Umea, Sweden. She has been a

visiting professor at the University of Innsbruck, Austria, the Royal Institute of Technology

in Stockholm, Sweden, the Massachusetts Institute of Technology, and Brown University.

She has served on numerous prize committees, including the Fudan Premium Fund of

Management Prize committee in Shanghai, China, the INFORMS Transportation Science

Section Robert Herman Lifetime Achievement Prize in Transportation Science committee,

46



the INFORMS Computer Science Technical Section prize committee, and the Discipline

Advisory Committee for Fulbright Scholar Awards. Professor Professor Nagurney is on

the Advisory Board of the European Union funded COMISEF project, which is a multi-

year, multi-national project and regularly serves on government panels and international

conference organizing committees. She is the editor of the book series, New Dimensions

in Networks (Edward Elgar Publishing), and the co-editor of the book series, Advances in

Computational Economics (Springer). She is on the editorial boards of the journals: Net-

works, Journal of Economic Dynamics and Control, Computational Economics, Computa-

tional Management Science, Annals of Regional Science, International Journal of High Per-

formance Computing Applications, The Journal of Financial Decision Making, Netnomics:

Economic Research and Electronic Networking, Optimization Letters, and the International

Journal of Sustainable Transportation.

47


