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Abstract: The efficient and effective performance of defense critical supply chain networks is

essential to both national and global security. Disruptions to supply chains, heightened in the

COVID-10 pandemic, and now further exacerbated because of growing geopolitical and other risks,

as well as Russia’s war against Ukraine, have garnered the attention of decision-makers and policy-

makers, including those in the defense sector. In the paper, a rigorous methodological framework is

presented for defense critical supply chain networks in the form of a defense supply chain network

economy that captures the behavior of defense firms, which care about revenues as well as risk, and

which includes the important labor resources and associated constraints. Variational inequality

theory is used to provide alternative formulations of the governing Nash Equilibrium conditions,

with a dynamic model counterpart used for the construction of an easy to implement algorithm that

yields closed form expressions at each iteration of the defense product path flows and the Lagrange

multipliers associated with the bounds on labor hours available on supply chain links. A defense

supply chain network efficiency /performance measure is proposed and an associated importance

indicator for supply chain network components. A resilience measure is also given that quantifies

the resilience of the defense supply chain network economy to disruptions in labor. The modeling

and algorithmic framework, as well as the measures proposed, are then illustrated via numerical

examples.

Keywords: Defense; Supply Chains; Networks; Resilience; Labor; Game Theory; Variational

Inequalities
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1. Introduction

In February 2022, the U.S Department of Defense (DoD) issued a long-awaited report, “Securing

Defense-Critical Supply Chains” (U.S. Department of Defense (2022)). The report was in response

to Executive Order (E.O.) 14017, “America’s Supply Chains,” signed by President Joseph R. Biden

Jr., to identify how to improve supply chain resilience and how to protect against material shortages,

which had clearly become exacerbated in the COVID-19 pandemic (see Biden Jr. (2021), United

States White House (2021)). The DoD’s report provided an assessment of defense critical supply

chains in order to improve the department’s capacity to defend the United States. With the

geopolitical risk rising globally and, with the war of Russia against Ukraine raging (cf. Bilefsky,

Perez-Pena, and Nagurney and Ermagun (2022)), following the major invasion, beginning February

24, 2022, having a framework for the modeling, analysis, and solution of defense critical supply

chains is of major importance. Of additional relevance is having a framework to identify which of the

nodes and links, corresponding, for example, to manufacturing sites and processes, storage facilities,

transportation and distribution, are important, since focusing on those can help to preserve the

performance of the supply chain networks for critical defense products in the case of disruptions.

Parallel to the COVID-19 pandemic, which is a global healthcare disaster, not limited in location

or to a time window, the number of disasters, including “natural” disasters, has been growing as

well as the people affected by them (see Nagurney and Qiang (2009) and Kotsireas et al. (2021)).

Hence, research on supply chain network performance and resilience has been garnering increasing

attention (see Sheffi (2015), Ivanov and Dolgui (2020), Nagurney and Ermagun (2022), Novoszel

and Wakolbinger (2022), Ramakrishnan (2022)) with supply chains networks for defense products

being essential to national and, even global, security. In the DoD report, manufacturing, as well as

the workforce, are considered to be strategic enablers and critical to building overall supply chain

resilience.

In this paper, a defense critical supply chain network game theory model is constructed in which

the defense firms compete noncooperatively in producing, transporting, storing, and distributing

their substitutable defense products, which are distinguished by firm or “brand.” Defense products

could include weaponry, radars, tanks, or even life-saving vests and medical kits. The objective

function faced by a defense firm that it wishes to maximize consists of the profit and the weighted

total risk associated with its supply chain network. A crucial element of the model is the availability

of labor associated with each supply chain network link and a bound on the labor hours available.

The governing equilibrium concept is that of a Nash Equilibrium (1950, 1951). Under appropriate

delineated assumptions, the governing equilibrium conditions are shown to satisfy a variational

inequality problem for which existence of a solution is guaranteed. An alternative variational

inequality is then constructed with both defense product path flows and Lagrange multipliers
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associated with the link labor bounds as variables, and with the underlying feasible set being

the nonnegative orthant. A dynamic adjustment process is then proposed utilizing the theory

of projected dynamical systems (see Nagurney and Zhang (1996)) and a discrete-time algorithm

outlined for computational purposes. Here, we consider a defense supply chain network economy in

that the defense demand markets, which can be associated with different governments, can procure

the defense products from the defense firms, which can be in different countries. The supply chain

network economy can correspond, for example, to defense firms associated with NATO, or the

European Union, or other such organizational bodies.

We, subsequently, turn to the construction of a defense supply chain network efficiency / perfor-

mance measure, which is then applied to define the importance of a network component, whether

a node, a link, or a composition of nodes and links thereof. Note is then made of how the measure

can be applied to measure resilience of the supply chain network to disruptions in labor. The

inclusion of labor into general supply chain networks is a recent contribution, and was motivated

by the impacts of the COVID-19 pandemic on workers, their health, loss of productivity, etc., as

well as the negative effects of shortages of labor on profits as well as consumers. Towards that

end, Nagurney (2021a,b) introduced labor into supply chain networks, beginning with optimization

models, and then evolving to game theory models, with the model by Nagurney (2021c) being the

most relevant to the one constructed in this paper. Here, however, we introduce risk, since risk is

a characteristic of many supply chains these days, due to a challenging geopolitic landscape (see

also Nagurney et al. (2005), Tang (2006), Tang and Tomlin (2009), Qiang, Nagurney, and Dong

(2009), Wu and Blackhurst (2009), Kotsireas et al. (2021)). Furthermore, defense critical products

can include high tech elements such as computer chips, which have been in short supply, as well as

other raw materials that may be located in places under governance by antagonistic regimes.

The paper is organized as follows. In Section 2, the defense critical supply chain network

game theory model with labor is presented and alternative variational inequality formulations

given. In addition, a dynamic version of the model is constructed, whose set of stationary points

coincides with the set of solutions to the variational inequality with defense product path flows and

link Lagrange multipliers associated with the labor bounds as variables. A time-discretization of

the continuous time adjustment processes, in the form of a discrete-algorithm, is provided. The

algorithm is applied in Section 4 to illustrate the framework presented here in a series of defense

critical supply chain network examples. In Section 3, the defense supply chain network efficiency

/performance measure is proposed, along with the definition of the importance of a supply chain

network component. In addition, the quantification of resilience of the supply chain network to

labor disruptions is highlighted. A summary of results, along with the conclusions, and suggestions

for future research, are provided in the Section 5.
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2. Defense Critical Supply Chain Network Game Theory Modeling

The supply chain network model with labor constructed here focuses on defense critical products.

We consider I firms involved in the production, transportation, storage, and ultimate distribution

of the defense products, which are substitutable. The products could, for example, be related

weaponry, such as missiles, or tanks, or even protective equipment such as helmets, life-saving

vests for the military and/or citizens, or medical kits. The demand markets, here, represent the

governmental defense demand markets. Note that we do not limit the model to a specific country.

The demand markets can correspond to demand markets of different countries but they are assumed

to be partners and not antagonists. Hence, this model could be useful, for example, for NATO

countries, for countries in the European Union, or other such coalitions.

The topology of the supply chain networks of the firms in the “defense supply chain network

economy” is depicted in Figure 1. All vectors are column vectors. The model builds upon the model

in Nagurney (2021c) but with the addition of the crucial feature of risk management. Here we also

focus on labor bounds on links and we provide, for the first time, a network performance/efficiency

measure for a supply chain network game theory model with labor and a formalism for the identi-

fication of the importance of nodes and links and their ranking.

A typical defense firm is denoted by i. Each defense firm i has ni
M production facilities; can

utilize ni
D distribution centers, and can distribute its defense product to the nR defense demand

markets. Li represents the links of the supply chain network of defense firm i; i = 1, . . . , I, with nLi

elements. By G = [N,L] is denoted the graph consisting of the set of nodes N and the set of links

L in Figure 1. The defense supply chain network topology in Figure 1 can be modified/adapted

according to the specific defense product under study.

The notation for the model is given in Table 1. The vectors are all column vectors.

The conservation of defense product flow equations are now presented.

The demand for each defense firm’s product at each defense demand market must be satisfied

by the defense product flows from the defense firm to the defense demand market, as follows: For

each defense firm i: i = 1, . . . , I: ∑
p∈P i

k

xp = dik, k = 1, . . . , nR. (1)

Furthermore, the the defense product path flows must be nonnegative; where, for each defense

firm i; i = 1, . . . , I:

xp ≥ 0, ∀p ∈ P i. (2)
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Figure 1: The Defense Critical Supply Chain Network Topology

The link product flows of each defense firm i; i = 1, . . . , I, must satisfy the following equations:

fa =
∑
p∈P i

xpδap, ∀a ∈ Li, (3)

where δap = 1, if link a is contained in path p, and 0, otherwise. Note that (3) guarantees that

the flow of a defense firm’s product on a link is equal to the sum of that defense product’s flows on

paths that contain that link.

As in Nagurney (2021a, b, c), the product output on each link is a linear function of the labor

input, where

fa = αala, ∀a ∈ Li, i = 1, . . . , I. (4)

The greater the value of αa, the more productive the labor on the link. Some economic background

on such a construct can be found in Mishra (2007).

We also consider the following constraints on labor, since shortages of skilled labor is a big issue

in defense critical supply chains: For each defense firm i; i = 1, . . . , I:

la ≤ l̄a, ∀a ∈ Li. (5)

The utility function of defense firm i, U i; i = 1, . . . , I, is the profit, consisting of the difference

between its revenue and its total costs, the wages paid out, and the weighted total risk:

U i =

nR∑
k=1

ρik(d)dik −
∑
a∈Li

ĉa(f)−
∑
a∈Li

wala − βi
∑
a∈Li

ra(f). (6a)
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Table 1: Notation for the Defense Critical Supply Chain Game Theory Model
Notation Definition

P i
k the set of paths in defense firm i’s supply chain network ending at defense

demand market k; i = 1, . . . , I; k = 1, . . . , nR.

P i the set of nP i paths of defense firm i; i = 1, . . . , I.

P the set of nP paths in the defense supply chain network economy.

xp; p ∈ P i
k the nonnegative flow of the defense product of firm i on path p originating

at defense firm node i and ending at defense demand market k; i = 1, . . . , I;
k = 1, . . . , nR. Defense firm i’s defense product path flows are grouped into
the vector xi ∈ R

nPi

+ . The defense firms’ defense product path flows are
grouped into the vector x ∈ RnP

+ .

fa the nonnegative flow of the defense product on link a, ∀a ∈ L. The defense
product link flows are grouped into the vector f ∈ RnL

+ .

la the labor on link a denoted in person hours, ∀a ∈ L.

αa positive factor relating input of labor to output of defense product flow on
link a, ∀a ∈ L.

l̄a the upper bound on the availability of labor on link a, ∀a ∈ L.

dik the demand for the defense product of defense firm i at defense demand
market k; i = 1, . . . , I; k = 1, . . . , nR. The {dik} elements of defense firm i
are grouped into the vector di ∈ RnR

+ and all the defense product demands

are grouped into the vector d ∈ RInR
+ .

ĉa(f) the total operational cost associated with link a, ∀a ∈ L.

ra(f) the risk function associated with link a, ∀a ∈ L.

βi the nonnegative weight applied to the evaluation of the total risk by defense
firm i; i = 1, . . . , I. We group all these weights into the vector β.

wa the cost (wage) of a unit of labor on link a, ∀a ∈ L.

ρik(d) the demand price function for the defense product of defense firm i at defense
demand market k; i = 1, . . . , I; k = 1, . . . , nR.

The first expression after the equal sign in (6a) is the revenue of defense firm i. The second

expression in (6a) is the total operational costs for the supply chain network Li of defense firm

i; the third expression is the total payout in terms of wages to laborers of defense firm i, and

the last term in (6a) is the weighted total risk of defense firm i. The utility functions Ui; i =

1, . . . , I, are assumed to be concave, with the demand price functions being monotone decreasing

and continuously differentiable and the total link cost functions being convex and also continuously

differentiable with the same assumptions made for the risk functions.

Each defense firm i; i = 1, . . . , I, hence, seeks to solve the following optimization problem:

Maximize

nR∑
k=1

ρik(d)dik −
∑
a∈Li

ĉa(f)−
∑
a∈Li

wala − βi
∑
a∈Li

ra(f), (6b)

subject to: (1) – (5).
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We now demonstrate that the objective function of each firm i; i = 1, . . . , I, can be expressed

in path flow variables only. We proceed as follows. In view of (2) and (3), can redefine the

total operational cost link functions as: c̃a(x) ≡ ĉa(f), ∀a ∈ L; the demand price functions as:

ρ̃ik(x) ≡ ρik(d), ∀i, ∀k, and the risk functions r̃a(x) ≡ ra(f), ∀a ∈ L. As noted in Nagurney

(2021a,b), it follows from (3) and (4), that la =
∑

p∈P xpδap
αa

, for all a ∈ L.

Hence, one can redefine the utility functions Ũ i(x) ≡ U i; i = 1 . . . , I, and group the utilities of

all the defense firms into an I-dimensional vector Ũ , where

Ũ = Ũ(x). (7)

The optimization problem faced by defense firm i; i = 1, . . . , I, can be expressed as:

Maximize Ũ i(x) =

nR∑
k=1

ρ̃ik(x)
∑
p∈P i

k

xp −
∑
a∈Li

c̃a(x)−
∑
a∈Li

wa

αa

∑
p∈P i

xpδap − βi
∑
a∈Li

r̃a(x), (8)

subject to the nonnegativity constraints (1) and the re-expressing of constraints in (5) as:∑
p∈P i xpδap

αa
≤ l̄a, ∀a ∈ Li. (9)

2.1 Governing Equilibrium Conditions and Variational Inequality Formulations

The governing equilibrium conditions are now stated, along with alternative variational inequality

formulations.

2.1.1 Nash Equilibrium Conditions and Variational Inequality Formulations

The feasible set Ki for defense firm i is defined as: Ki ≡ {xi|xi ∈ R
nPi

+ ,
∑

p∈Pi xpδap

αa
≤ l̄a, ∀a ∈ Li},

for i = 1, . . . , I, with K ≡
∏I

i=1Ki. Clearly, K is a convex set.

Since the defense firms are utility-maximizers, they compete noncooperatively until the following

Defense Supply Chain Nash Equilibrium is attained.

Definition 1: Defense Supply Chain Network Nash Equilibrium

A defense product path flow pattern x∗ ∈ K is a Defense Supply Chain Network Nash Equilibrium

if for each defense firm i; i = 1, . . . , I:

Ũ i(xi∗, x̂i∗) ≥ Ũ i(xi, x̂i∗), ∀xi ∈ Ki, (10)

where x̂i∗ ≡ (x1∗, . . . , xi−1∗, xi+1∗, . . . , xI∗).
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Conditions (10) state that a Defense Supply Chain Nash Equilibrium is achieved if no defense

firm can improve upon its utility unilaterally.

It follows from the classical theory of Nash equilibria and variational inequalities that, under

the imposed assumptions on the total cost, the demand price, and the risk functions, (cf. Gabay

and Moulin (1980) and Nagurney (1999)), the solution to the above Defense Supply Chain Nash

Equilibrium problem (see Nash (1950, 1951)) coincides with the solution of the variational inequality

problem: Determine x∗ ∈ K, such that

−
I∑

i=1

⟨∇xiŨ i(x∗), xi − xi∗⟩ ≥ 0, ∀x ∈ K, (11)

where ⟨·, ·⟩ denotes the inner product in the corresponding Euclidean space (here, of dimension

nP ), and ∇xiŨ i(x) is the gradient of Ũ i(x) with respect to xi.

Existence of a solution to variational inequality (11) is guaranteed since the feasible set K is

compact and the utility functions are continuously differentiable, under our imposed assumptions

(cf. Kinderlehrer and Stampacchia (1980)).

An alternative variational inequality to (11) is now provided over a simpler feasible set, following

the arguments in Nagurney (2021b). The alternative variational inequality is over the nonnegative

orthant and will suggest an elegant computational procedure, based on the underlying dynamics as

the defense firms adjust their defense product flows over time, with signals provided by Lagrange

multipliers associated with the labor link bounds, until a stationary point; equivalently, an equilib-

rium point satisfying the variational inequality is achieved. We associate Lagrange multipliers λa

with the constraint (9) for each link a ∈ L and group the Lagrange multipliers for each defense firm

i’s supply chain network Li into the vector λi. All such vectors for the defense firms are then grouped

into the vector λ ∈ RnL
+ . Also, we introduce the feasible sets: K1

i ≡ {(xi, λi)|(xi, λi) ∈ R
nPi+nLi

+ };
i = 1, . . . , I, and K1 ≡

∏I
i=1K

1
i .

Theorem 1: Alternative Variational Inequality Formulation of the Defense Supply

Chain Nash Equilibrium

The Defense Supply Chain Network Nash Equilibrium satisfying Definition 1 is equivalent to the

solution of the variational inequality: determine the vector of equilibrium defense product path flows

and the vector of optimal Lagrange multipliers, (x∗, λ∗) ∈ K1, such that:

I∑
i=1

nR∑
k=1

∑
p∈P i

k

∂C̃p(x
∗)

∂xp
+ βi

∂R̃p(x
∗)

∂xp
+

∑
a∈Li

λ∗
a

αa
δap +

∑
a∈Li

wa

αa
δap − ρ̃ik(x

∗)−
nR∑
l=1

∂ρ̃il(x
∗)

∂xp

∑
q∈P i

l

x∗q

×[xp−x∗p]

+
∑
a∈L

[
l̄a −

∑
p∈P x∗pδap

αa

]
× [λa − λ∗

a] ≥ 0, ∀(x, λ) ∈ K1, (12)
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where
∂C̃p(x)

∂xp
≡

∑
a∈Li

∑
b∈Li

∂ĉb(f)

∂fa
δap, ∀p ∈ P i, (13)

∂R̃p(x)

∂xp
≡

∑
a∈Li

∑
b∈Li

∂rb(f)

∂fa
δap, ∀p ∈ P i. (14)

Proof: See proof of Theorem 1 in Nagurney (2021c).

Variational inequality (12) is now put into standard form (cf. Nagurney (1999)), VI(F,K),

where one seeks to determine a vector X∗ ∈ K ⊂ RN , such that

⟨F (X∗), X −X∗⟩ ≥ 0, ∀X ∈ K, (15)

where F is a given continuous function from K to RN , K is a given closed, convex set, and ⟨·, ·⟩
denotes the inner product in N -dimensional Euclidean space.

In order to put the variational inequality (12) into the form in (15), we let N ≡ nP + nL;

X ≡ (x, λ) and F (X) ≡ (F 1(X), F 2(X)), where the p-th component of F 1(X) ≡ ∂C̃p(x)
∂xp

+βi
∂R̃p(x)
∂xp

+∑
a∈Li

λa
αa

δap +
∑

a∈Li
wa
αa

δap − ρ̃ik(x)−
∑nR

l=1
∂ρ̃il(x)
∂xp

∑
q∈P i

l
xq and the a-th component of F 2(X) ≡

l̄a −
∑

p∈P xpδap
αa

.

2.2 Dynamics and Algorithm

It is interesting and valuable to also discuss the underlying dynamics as the defense firms adjust

their defense product outputs over time and the Lagrange multipliers associated with the link labor

bounds also evolve over time. For this purpose, we can apply the theory of projected dynamical

systems (cf. Dupuis and Nagurney (993) and Nagurney and Zhang (1996)). We recall the projection

operator ΠK(X, v):

ΠK(X, v) = lim
δ→0

(PK(X + δv)−X)

δ
, (16)

with PK being the classical projection operator (see Nagurney (1999)). The ordinary differential

equation of interest is then:

Ẋ = ΠK(X,−F (X)), X(0) = X0 ∈ K. (17)

We know from Theorem 1.23 in Nagurney(1999) that a stationary point X∗ of the projected

dynamical system (17), which, by definition, satisfies:

0 = ΠK(X
∗,−F (X∗)), (18)
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coincides with the solution of variational inequality (15).

Specifically, in the context of the model, the rate of change of the defense product flow at a

point in time on a path p depends on: −∂C̃p(x)
∂xp

− βi
∂R̃p(x)
∂xp

−
∑

a∈Li
λa
αa

δap −
∑

a∈Li
wa
αa

δap + ρ̃ik(x)+∑nR
l=1

∂ρ̃il(x)
∂xp

∑
q∈P i

l
xq at that point in time, whereas the rate of change of the Lagrange multiplier

on a link a depends on −l̄a +
∑

p∈P xpδap
αa

at the point in time. If the marginal revenue associated

with a path of a firm’s supply chain network exceeds the marginal costs plus the weighted marginal

risk on the path, then the defense product flow will increase; if not, it will decrease, provided that it

does not become negative. The projection operator ΠK guarantees that the evolution of the product

path flows and of the Lagrange multipliers always lies within the feasible set K; in other words,

they always remain nonnegative. A plethora of dynamic supply chain network models, including

multitiered ones (but without labor), can be found in the book by Nagurney (2006). Nagurney

and Ermagun (2022) used the modified projection method of Korpelevich (1977), whereas in this

paper, the Euler Method is used.

Observe that (17) represents a continuous-time adjustment process. However, for computational

purposes, a discrete-time algorithm that can be easily implemented is needed. For the solution of

the model, we propose the Euler method, which is induced by the general iterative scheme of Dupuis

and Nagurney (1993), with its statement being as follows.

The Euler Method

Initialize with X0 ∈ K and set τ = 0. Compute:

Xτ+1 = PK(X
τ − aτF (Xτ )), (19)

where:
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → ∞, as τ → ∞.

As mentioned earlier, the feasible set K for the variational inequality (12) (see also (15)) for the

defense supply chain network model is the nonnegative orthant, and, hence, the resolution of the

algorithmic scheme in (19) yields closed form expressions for the defense product path flows and

for the Lagrange multipliers as stated below.

Explicit Formulae for the Defense Product Path Flows at an Iteration

At iteration τ + 1, one computes the following for each path p; p ∈ P i
k, ∀i, k:

xτ+1
p = max{0, xτa−aτ (

∂C̃p(x
τ )

∂xp
+βi

∂R̃p(x
τ )

∂xp
+
∑
a∈Li

λτ
a

αa
δap+

∑
a∈Li

wa

αa
δap−ρ̃ik(x

τ )−
nR∑
l=1

∂ρ̃il(x
τ )

∂xp

∑
q∈P i

l

xτq )};

(20)
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Explicit Formulae for the Lagrange Multipliers at an Iteration

At iteration τ + 1, one computes the following for each Lagrange multiplier a ∈ L:

λτ+1
a = max{0, λτ

a − aτ (l̄a −
∑

p∈P xτpδap

αa
)}. (21)

We apply this algorithm in Section 4 to defense supply chain network examples for which

we report the solutions, along with the network performance / efficiency values and additional

information, using also results in Section 3.

3. Defense Supply Chain Network Efficiency / Performance

It is important to recognize that, in matters of defense, a government, in preparing for conflicts

and/or in times of war, may need to acquire defense supplies from a country other than its own.

Our defense supply chain network model allows for this and, we see that this is happening now as

the war by Russia against Ukraine rages. Hence, we believe that an adaptation of the constructs

for supply chain network performance / efficiency of Nagurney and Qiang (2009) and of Nagurney

and Li (2016) can also be applied for the new model in this paper, with note that the new model,

unlike the previous ones in the above citations, includes labor; plus, we also have explicit weighted

risk functions, since risk is of high relevance in the defense sector.

3.1 Efficiency/Performance of a Defense Supply Chain Network and Importance Iden-

tification of a Network Component

The efficiency/performance of a defense supply chain network, denoted by efficiency, E , is defined
as:

E = E(G, ĉ, ρ, w, r, β, α, l̄) ≡
I∑

i=1

nR∑
k=1

d∗ik
ρik(d∗)

InR
, (22)

with the demands, d∗, and the incurred defense demand market prices in (22), evaluated at the

solution to (12). Observe that, given a defense supply chain network economy, and the various

parameters and functions, the corresponding multi-firm supply chain network is considered as

performing better if, on the average, it can handle higher demands at lower prices. Note that,

as can be inferred from variational inequality (12), the defense demand market prices capture the

information associated with the operational costs, the wages paid out to labor, as well as the

weighted risk.

Following then Nagurney and Qiang (2009) for results therein for supply chains and Nagurney

and Li (2016), one can then define the importance of a component g (node, link, or a combination

of nodes and links), I(g), which represents the efficiency drop when g is removed from the defense
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supply chain network, as:

I(g) =
∆E
E

=
E(G, ĉ, ρ, w, r, β, α, l̄)− E(G− g, ĉ, ρ, w, r, β, α, l̄)

E(G, ĉ, ρ, w, r, β, α, l̄)
. (23)

One can rank the importance of nodes or links, using (23). This formalism can be quite valuable

for those engaged in decision-making and policy-making in the military and defense. Those defense

supply chain network components that are of higher importance should be paid greater attention

to since a disruption to those components will have a bigger overall impact.

Using the above efficiency / performance measure E one can also quantify the resilience of

the defense supply chain network economy to disruptions in labor as discussed in Nagurney and

Ermagun (2022), but in the context of a supply chain network optimization model with labor and

not a game theory model that also captures risk.

3.2 Resilience Measure Associated with Labor Disruptions

We can adapt the measure proposed in Nagurney and Ermagun (2022) for the defense supply chain

network game theory model. As therein, let l̄γ denote the reduction of labor availability with

γ ∈ (0, 1] so if γ = .8 this means that the labor availability associated with the labor constraints is

now 80% of the original labor availability as in E .

Resilience Measure Capturing Labor Availability

One can define the resilience measure with respect to labor availability, Rl̄γ , as

Rl̄γ ≡ Rl̄γ(G, ĉ, ρ, π, α, l̄) =
E l̄γ

E
× 100%, (24)

with E as in (22).

The expression (24) quantifies the resilience of the defense supply chain network subject to

reduction of labor availability. The closer the value is to 100%, the greater the resilience.

4. Numerical Examples

In this Section, the modeling framework is illustrated through numerical examples. The Euler

Method was implemented in FORTRAN and a Linux system used for the computations.The {aτ}
sequence used was: {10(1, 12 ,

1
2 ,

1
3 ,

1
3 ,

1
3 , . . .)}. The algorithm was initialized with a demand of 40

for each demand market of each firm with the demand equally distributed among the paths of

each firm. The initial Lagrange multipliers were set to 0.00. The algorithm was deemed to have

converged when the absolute value of each computed variable evaluated at two successive iterations

differed by no more than 10−7.
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The defense supply chain network economy for the specific defense product, which could cor-

respond, for example, to helmets or protective vests, consists of two defense firms, each of which

has two production sites, a single distribution center, and serves two defense demand markets, as

depicted in Figure 2.
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Figure 2: The Supply Chain Network Topology for the Numerical Examples

Example 1 - Baseline

The first example, which serves as the baseline has the following data. Note that, in this example,

we assume that the firms are not concerned about risk, so that all the risk functions are identically

equal to 0.00.

The total operational cost functions associated with Defense Firm 1’s supply chain network

links L1 are:

ĉa(f) = .006f2
a , ĉb(f) = .007f2

b , ĉc(f) = .01f2
c , ĉd(f) = .01f2

d , ĉe(f) = .02f2
e ,

ĉf (f) = .05f2
f , ĉg(f) = .05f2

g .
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The total operational costs associated with Defense Firm 2’s supply chain network links L2 are:

ĉh(f) = .0075f2
h , ĉi(f) = .008f2

i , ĉj(f) = .005f2
j , ĉk(f) = .005f2

k , ĉl(f) = .015f2
l ,

ĉm(f) = .1f2
m, ĉn(f) = .1f2

n.

The hourly labor wages are:

wa = 10, wb = 10, wc = 15, wd = 15, we = 20, wf = 17, wg = 18,

wh = 11, wi = 22, wj = 15, wk = 15, wl = 18, wm = 18, wn = 18.

The link labor productivity factors are:

αa = 24, αb = 25, αc = 100, αd = 100, αe = 50, αf = 100, αg = 100,

αh = 23, αi = 24, αj = 100, αk = 100, αl = 70, αm = 100, αn = 100.

The bounds on labor are:

l̄a = 100, l̄b = 200, l̄c = 300, l̄d = 300, l̄e = 100, l̄f = 120, l̄g = 120,

l̄h = 800, l̄i = 90, l̄j = 200, l̄k = 200, l̄l = 300, l̄m = 100, l̄n = 100.

The demand price functions of Defense Firm 1 are:

ρ11(d) = −.0001d11 − .00005d21 + 600, ρ12(d) = −.0002d12 − .0001d22 + 800.

The demand price functions of Defense Firm 2 are:

ρ21(d) = −.0003d21 + 700, ρ22(d) = −.0002d22 + 700.

The paths are: p1 = (a, c, e, f), p2 = (b, d, e, f), p3 = (a, c, e, g), pr = (b, d, e, g) for Defense Firm

1 and p5 = (h, j, l,m), p6 = (i, k, l,m), p7 = (h, j, l, n), and p8 = (i, k, l, n) for Defense Firm 2.

The computed equilibrium defense product path flows are reported in Table 2. The computed

equilibrium labor values are reported in Table 3. All the Lagrange multipliers have a value of 0.00

at the equilibrium.

The defense product prices at equilibrium are:

ρ11 = 599.75, ρ12 = 799.10, ρ21 = 699.40, ρ22 = 699.60,
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with the equilibrium demands:

d∗11 = 1506.19, d∗12 = 3494.12, d∗21 = 1999.04, d∗22 = 2001.03.

The utility for Defense Firm 1 is: 2,258,772.50 and that for Defense Firm 2 is: 1,649,827.75.

We report the efficiency of this supply chain network, even with all the risk functions set to

0.00. The E = 3.15.

Example 2: Addition of Risk Functions Associated with Production Sites

Example 2 has the same data as that in Example 1, except that now we consider the situation that

the production sites are suffering from geopolitical risk and, hence, we have:

ra = f2
a , rb(f) = f2

b , rh(f) = f2
h , ri(f) = f2

i ,

with the risk weights of the two firms: β1 = β2 = 1.

The computed equilibrium path flows are reported in Table 2, with the computed labor values

given in Table 3. All the Lagrange multipliers, again, have a value of 0.00 at the equilibrium. In

other words, the respective labor bounds are not reached in Example 2.

The defense product prices at equilibrium are now:

ρ11 = 599.98, ρ12 = 799.83, ρ21 = 699.91, ρ22 = 699.94,

with the equilibrium demands:

d∗11 = 0.00, d∗12 = 690.49, d∗21 = 305.50, d∗22 = 305.80.

The utility for Defense Firm 1 now is: 275,793.59 and that for Defense Firm 2: 213,562.31. One

can see that the utilities of both firms have dropped precipitously, in comparison to the utilities

that they earned in Example 1, when there was no risk. The efficiency of this defense supply chain

network, with risk functions associated with production sites, E = .43. We see that this value is

much lower than that in Example 1. We then proceeded to see how resilient this defense supply

chain network is with respect to labor disruptions. We calculated Rl̄γ for γ = .9, .7, .5, .3, .1 and

found that Rl̄γ = 1 for all the values of γ noted, except when γ = .1, where Rl̄.1 = .7. We can

conclude that this defense supply chain network, with the data provided, is quite resilient to labor

disruptions.

In Table 4, we report the efficiency of the defense supply chain network for Example 2 when a

link g is removed, along with the importance I(g), for g = a, . . . , n. Table 4 provides interesting
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Equilibrium Product Path Flows Ex. 1 Ex. 2

x∗p1 703.17 0.00

x∗p2 803.02 0.00

x∗p3 1696.82 345.41

x∗p4 1797.30 345.08

x∗p5 919.52 152.84

x∗p6 1079.51 152.66

x∗p7 920.51 152.99

x∗p8 1080.52 152.81

Table 2: Equilibrium Defense Product Path Flows for Examples 1 and 2

Equilibrium Link Labor Values Ex. 1 Ex. 2

l∗a 100.00 14.39

l∗b 104.01 13.80

l∗c 24.00 3.45

l∗d 26.00 3.45

l∗e 100.00 13.81

l∗f 15.06 0.00

l∗g 34.94 6.90

l∗h 80.00 13.30

l∗i 90.00 12.73

l∗j 18.40 3.06

l∗k 21.60 3.05

l∗l 57.14 8.73

l∗m 19.99 3.05

l∗n 20.01 3.96

Table 3: Equilibrium Link Labor Values for Examples 1 and 2

results. Overall, one can see that the supply chain network of Defense Firm 2 is more important than

that of Defense Firm 1 to this defense supply chain network economy and cognizant governments

should make note of this. Indeed, five of the seven links of Defense Firm 2’s supply chain network

have positive values in terms of their importance. Furthermore, Defense Firm 2’s link l, which

corresponds to a storage link, has the highest importance value; therefore, every effort should

be expended to preserve its functionality. Also, the production link i of Defense Firm 2 merits

maintenance and care as do the transportation links j and k. Finally, link m, a distribution link

to Defense Demand Market 2, is also of importance. As for the supply chain network of Defense

Firm 1, link e, which is a storage link, has the highest value in terms of importance for Defense

Firm 1 and, interestingly, its production site associated with link a is of the lowest importance.

We emphasize that not only the absolute values in terms of importance of supply chain network

components are relevant but also their relative values.
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g E(G− g) I(g)

a 2.43 -4.43

b .90 -1.08

c .89 -1.08

d .89 -1.08

e .77 -.79

f 1.01 -1.39

g .99 -1.30

h .99 -1.30

i .34 .21

j .34 .21

k .34 .21

l .22 .50

m .46 -.06

n .42 .03

Table 4: Efficiency of the Defense Supply Chain Network for Example 2 when Link g Is Removed
and the Importance I(g)

5. Summary, Conclusions, and Suggestions for Future Research

In this paper, a defense critical supply chain network game theory model was introduced, which

includes labor and associated constraints, as well as risk, since current world events have height-

ened the importance of both risk management and well as resilience of supply chain networks to

disruptions, including those associated with labor, which have been significant in the COVID-19

pandemic. The methodological framework for the modeling, analysis, and computations, made use

of both variational inequality theory and the theory of projected dynamical systems.

We proposed a noncooperative game theory model consisting of defense firms seeking to supply

defense products, that are substitutable to demand markets, which can be associated with different

governments that are not antagonistic to one another. The labor constraints are bounds on hours of

labor available on the supply chain network links, which are: production, transportation, storage,

and distribution links. The utility function of each firm captures revenue as well as weighted risk and

the governing equilibrium concept is that of a Nash Equilibrium. Under appropriate assumptions

on the utility functions, we provide alternative variational inequality formulations of the governing

equilibrium conditions. In addition, a dynamic model is constructed, whose stationary points

coincide with the set of solutions to the variational inequality with variables consisting of defense

product path flows and Lagrange multipliers associated with the labor constraints. An algorithm,

the Euler Method, as the proposed for the time-discretization of the continuous-time trajectories

and used in the solution of the numerical examples.

In addition, a network efficiency / performance measure is proposed for the defense supply chain
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network economy, which can then be applied to quantify the importance of supply chain network

components, and then rank them. A resilience measure is also constructed to assess the impacts of

disruptions to labor availability.

In order to illustrate the defense supply chain network modeling framework, numerical examples

are solved with input and output data reported. The information regarding the defense supply chain

network economy, made possible with the tools in the paper, can be useful for decision-makers and

policy-makers in governments that are concerned about defense.

It would be interesting, for future research, to investigate the supply chain network efficiency

under different kind of labor constraints (see also Nagurney (2021c)) and also under different pro-

ductivity levels (Nagurney and Ermagun (2022)). It would also be worthwhile to include additional

tiers in the supply chain network to include, specifically, suppliers and their behavior, along with

labor, and to address issues of supply chain network efficiency and resilience in the defense sector.
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