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Abstract: In this paper we consider the design of supply chain networks in the case of

critical needs as may occur, for example, in disasters, emergencies, pending epidemics, and

attacks affecting national security. By “critical needs” we mean products that are essential

to the survival of the population, which can include, for example, vaccines, medicine, food,

water, etc., depending upon the particular application. “Critical” implies that the demand

for the product should be met as nearly as possible since otherwise there may be additional

loss of life. The model that we develop captures a single organization, such as the government

or a major health organization or corporation that seeks to “produce” the product at several

possible manufacturing plants, have it stored, if need be, and distributed to the demand

points. We assume that the organization is aware of the total costs associated with the

various operational supply chain network activities, knows the existing capacities of the links,

and is interested in identifying the additional capacity outlays, the production amounts, and

shipment values so that the demand is satisfied with associated penalties if the demand is

not met (as well as penalties with oversupply, which are expected to be lower). In addition,

the organization has the option of outsourcing the production/storage/delivery of the critical

product at a fixed/negotiated price and with the capacities of those entities being fixed and

known. The solution of the model provides the optimal capacity enhancements and volumes
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of product flows so as to minimize the total cost, which we assume to be a generalized cost,

and can include time, subject to the demands being satisfied, as nearly as possible, under

demand uncertainty.

Keywords: Supply chain design, networks, disasters, vaccine production, pandemics, emer-

gency preparedness, humanitarian logistics, critical needs,demand uncertainty, healthcare,

outsourcing
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1. Introduction

The number of disasters is increasing globally, as well as the people affected by disasters.

At the same time, with the advent of increasing globalization, viruses are spreading more

quickly and creating new challenges for medical and health professionals, researchers, and

government officials. For example, between 2000 and 2004 the average annual number of

disasters was 55% higher than in the period 1994 through 1999, with 33% more humans

affected in the former period than in the latter (cf. Balcik and Beamon (2008) and Nagurney

and Qiang (2009)). The International Strategy for Disaster Reduction (2006) notes that

approximately 150 million people required assistance, because of disasters, in 2005, with 157

million requiring assistance in 2006.

According to CNN.com (2009), as of July 31, 2009, the total number of deaths due to

the H1N1 virus, also known as the swine flu, was 1,154, with an increase of 338 deaths

since the World Health Organization’s previous update on July 27, 2009, with 168 countries

reporting cases. There has been progress on an H1N1 vaccine with the pharmaceutical giant

GlaxoSmithKline signing contracts with nine governments to provide 96 million doses of a

H1N1 vaccine come the Fall. Nevertheless, the pharmaceutical company is aware of possible

capacity and production issues. Sanofi-Aventis (see Reuters.com (2009)), on the other hand,

has begun large-scale production of an H1N1 vaccine at its plants in the US and in France.

Clinical trials took place last summer. It will also be producing seasonal vaccines with its

two Pennsylvania factories able to produce 150 million doses a year and its French plant 120

million doses of seasonal vaccine annually.

Vaccines are considered one of the most effective tools of public health policy, with current

vaccination programs saving millions of lives a year and new vaccines enabling the protection

of millions more, including those in some of the poorest countries in the world (see WHO

(2009) and Mowery and Mitchell (1995)). Nevertheless, between 2000 and 2004 there were

nationwide shortages in the US of six recommended childhood vaccines and the production

of adult influenza vaccine was interrupted several times (Coleman et al. (2005)). Public

health and medical professionals have long been cognizant of the vulnerability of vaccine

production and delivery with the latter often relying on only one or two manufacturers for

critical products (cf. Treanor (2004)). New illnesses, in turn, pose further stresses for vaccine
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(and medicine) development, production, and distribution.

Underlying the delivery of goods and services in times of crises, such as in the case of dis-

asters, pandemics, and life-threatening major disruptions, are supply chains, without which

essential products do not get delivered in a timely manner, with possible increased disease,

injuries, and casualties. However, although the average number of disasters has been increas-

ing annually over the past decade the average percentage of needs met by different sectors

in the period 2000 through 2005 identifies significant shortfalls. According to Development

Initiatives (2006), based on data in the Financial Tracking System of the Office for the Coor-

dination of Humanitarian Affairs, from 2000-2005, the average needs met by different sectors

in the case of disasters were: 79% by the food sector; 37% of the health needs; 35% of the

water and sanitation needs; 28% of the shelter and non-food items, and 24% of the economic

recovery and infrastructure needs. A case in point is the response to Hurricane Katrina, in

which essential services failed completely, and which has been called an “American tragedy”

(Guidotti (2006)). Additional challenges in providing essential goods and services in human-

itarian logistics operations are faced by the developing world, whose infrastructure, even in

the best of times, may be lacking (see Nagurney (2008)).

As a more recent example, on January 12, 2010, Haiti experienced its biggest earth-

quake in two centuries, with one third of its population seriously affected in the capital

city of Port-au-Prince, with the infrastructure from roads, the port, hospitals, schools, etc.,

severely damaged, if not destroyed. Getting the humanitarian relief supplies from water,

food, medicines, and associated services, to the victims has been a major challenge with

the absence of well-planned and coordinated logistics a clear problem. There was no central

and coordinated control of the distribution of relief supplies for weeks following this disaster

(Cowell and Otterman (2010)). It is clear that a better-designed supply chain would have

facilitated the relief efforts and would have resulted in less suffering and lives lost.

In this paper, we provide a system-optimization perspective for supply chain network

design for critical needs that allows for the simultaneous determination of link capacities,

through investments, and the product flows on various links, that is, the manufacturing,

storage, distribution/shipment links, etc. At the same time, we allow for the flexibility

associated with outsourcing. We believe that, in times of crises, a system-optimization
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approach is mandated since the demands for critical supplies should be met (as nearly as

possible) at minimal total cost. The use of a profit maximization criterion, as in Nagurney

(2010), may not appeal to stakeholders, whereas a cost minimization one demonstrates social

responsibility and sensitivity. In addition, even in severe disasters and crises, there should

be some information available, as to the expected demand for essential products, in different

geographical locations, based on, for example, a previous census and/or governmental data

collection.

A system-optimization perspective for supply chain network design for critical needs with

outsourcing, as we demonstrate, captures, in a graphical manner, the options available, and

provides flexibility in terms of the evaluation of trade-offs of producing “in-house” versus

outsourcing. Importantly, we consider a generalized cost associated with the various supply

chain activities, in order to subsume not only the financial cost but also the time element,

any risk, etc. In particular, we capture in the model the uncertainty of the demand and the

associated penalties for undersupply/shortages at various demand points.

System-optimization models have recently been developed for supply chain network inte-

gration in the case of mergers and acquisitions (see Nagurney (2009a), Nagurney and Woolley

(2010), and Nagurney, Woolley, and Qiang (2009)). However, in those models, in contrast

to the one in this paper, it is assumed that the capacities on the supply chain network links

are fixed and known. It is worth noting that in 1967, there were 26 licensed manufactur-

ers of vaccines in the US, whereas the number has now fallen to 6 (see Klein and Myers

(2006)). Interestingly, the merging of manufacturers is one reason for the decreased number

of manufacturers of vaccines.

An alternative approach (cf. Nagurney, Dong, and Zhang (2002), Zhang, Dong, and

Nagurney (2003), Zhang (2006), Nagurney (2009b)) considers competition among decision-

makers in supply chains and uses equilibrium (as opposed to optimization) as the governing

concept. In such supply chain network equilibrium models (see also Nagurney (2006) and

the references therein) there are no explicit capacity link variables. The design issue in

such models is, typically, handled by eliminating the links in the solution that have zero

product flows. Moreover, in the case of critical needs, cost-minimization, rather than profit-

maximization is the more appropriate objective function for decision-makers. An equilibrium
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approach to facility location which makes use of binary variables can be found in Miller,

Friesz, and Tobin (1996).

It is worth noting that our perspective for supply chain network design in this paper

is based, in part, on the concept of system-optimization in transportation and regional

science (cf. Beckmann, McGuire, and Winsten (1956), Dafermos and Sparrow (1969), and

Boyce, Mahmassani, and Nagurney (2005)). However, here we include also link capacity

enhancements as decision variables, as well as explicit outsourcing, plus we also handle any

existing capacities on the links. Moreover, here we also model uncertainty associated with

the demand for the product at the demand points (see also Qiang, Nagurney, and Dong

(2009) and the references therein).

This paper is organized as follows. In Section 2, we develop the supply chain network

design model for critical needs with outsourcing in which capacity levels (associated with

those links that the organization controls) and product flows are endogenous variables. We

establish that the optimization problem is equivalent to a variational inequality problem,

with nice features for computations. The solution of the supply chain network design model

yields the optimal product flows and enhancement capacities on the supply chain network,

and the optimal outsourced volumes, so that the total cost is minimized and the demands

are satisfied as nearly as possible. We also discuss two distinct applications of our model to

vaccine production and emergency preparedness and humanitarian logistics, and provide, for

illustration purposes, several simple numerical examples. For completeness, in Section 3, we

outline the algorithm which yields closed form expressions at each iteration for the product

flows, the capacity enhancements, and the Lagrange multipliers. In Section 4 we compute

solutions to additional supply chain network design numerical examples. In Section 5, we

summarize the results in this paper and present our conclusions.
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2. The Supply Chain Network Design Model for Critical Needs

In this Section, we develop the supply chain network design model for critical needs.

We assume that the organization (the government, corporation, humanitarian organization,

etc.) responsible for ensuring that the demand for the essential product be met is considering

the possible supply chain activities, associated with the product (be it medicine, vaccine,

water, etc.), which are represented by a network. For clarity and definiteness, we consider

the network topology depicted in Figure 1 but emphasize that the modeling framework

developed here is not limited to such a network. Indeed, as will become apparent, what is

required, to begin with, is the appropriate network topology with a top level (origin) node

1 corresponding to the organization and the bottom level (destination) nodes corresponding

to the demand points that the organization must supply. We also allow for outsourcing of

the product in terms of its production and delivery with the outsourcing links represented

in Figure 1 as curved links. As we will show below, there will be a fixed cost associated with

each outsourcing link to reflect the price for the product the organization has agreed to pay,

if it decides to take that route.

The paths joining the origin node to the destination nodes represent sequences of supply

chain network activities that ensure that the product is produced and, ultimately, delivered

to those in need at the demand points. Hence, different supply chain network topologies

to that depicted in Figure 1 correspond to distinct supply chain network problems. For

example, if a product can be delivered directly to the demand points from a manufacturing

plant, then there would be a direct link joining the corresponding nodes.

We assume that in the supply chain network topology there exists one path (or more)

joining node 1 with each destination node. This assumption for the supply chain network

design model guarantees that the demand at each demand point will be met as closely as

possible, given that we also consider demand uncertainty, as discussed below. The solution

of the model will then yield the optimal product flows and capacity investments at minimum

total cost. Note that the supply chain network schematic, as in Figure 1, provides the

foundation upon which the optimal supply chain network design will be determined.

In particular, as depicted in Figure 1, we assume that the organization is considering

nM manufacturing facilities/plants; nD distribution centers, but must serve the nR demand
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points with respective demands given by: dR1 , dR2 , . . ., dRnR
. The links from the top-

tiered node 1 are connected to the possible manufacturing nodes of the organization, which

are denoted, respectively, by: M1, . . . ,MnM
, and these links represent the manufacturing

links. The links from the manufacturing nodes, in turn, are connected to the possible

distribution center nodes of the organization, and are denoted by D1,1, . . . , DnD,1. These

links correspond to the possible shipment links between the manufacturing plants and the

distribution centers where the product will be stored. The links joining nodes D1,1, . . . , DnD,1

with nodes D1,2, . . . , DnD,2 correspond to the possible storage links. Finally, there are possible

shipment links joining the nodes D1,2, . . . , DnD,2 with the demand nodes: R1, . . . , RnR
. As

noted earlier, there are also outsourcing links, which join the top node to each bottom

node. The organization does not control the capacities on these links since they have been

established by the particular firm that corresponds to the outsource link prior.

We denote the supply chain network consisting of the graph G = [N, L], where N denotes

the set of nodes and L the set of links. Let L1 and L2 denote the links associated with “in

house” supply chain activities and the outsourcing activities, respectively. Then L ≡ L1∪L2.

We further denote nL1 and nL2 as the number of links in the link set L1 and L2 respectively.

Note that G represents the topology of the full supply chain network possibilities (as in

Figure 1, for example). The ultimate solution of the complete model will yield the optimal

supply chain network design.

As mentioned in the Introduction, the formalism that we utilize is that of system-

optimization, where the organization wishes to determine which manufacturing plants it

should operate and at what level; the same for the distribution centers, as well as how much

of the product should be outsourced. In addition, the organization seeks to determine the

capacity levels of the shipment links as well. We assume that the organization seeks to min-

imize the total costs associated with its production, storage, distribution activities, along

with the total investment outlays to achieve the activity levels as given by the capacities on

its various links, and the volumes of the product outsourced, subject to the demand being

satisfied as nearly as possible at the demand points with associated penalties if the demands

are not met.
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Associated with each link (cf. Figure 1) of the network is a total cost that reflects the

total cost of operating the particular supply chain activity, that is, the manufacturing of the

product, the shipment of the product, the storage of the product, etc., over the time horizon

underlying the design problem. We denote, without any loss in generality, the links by a, b,

etc., and the total cost on a link a by ĉa. For the sake of generality, we note that the total

costs are generalized costs and may include, for example, risk, time, etc. We also emphasize

that the model is, in effect, not restricted to the topology in Figure 1.

A path p in the network (see, e.g., Figure 1) joining node 1, which is the origin node,

to a demand node, which is a destination node, represents the activities and their sequence

associated with producing the product and having it, ultimately, delivered to those in need.

Let wk denote the pair of origin/destination (O/D) nodes (1, Rk) and let Pwk
denote the

set of paths, which represent alternative associated possible supply chain network processes,

joining (1, Rk). P then denotes the set of all paths joining node 1 to the demand nodes. Let

nP denote the number of paths from the organization to the demand markets.

Let xp represent the nonnegative flow of the product on path p joining (origin) node 1 with

a (destination) demand node that the organization is to supply with the critical product.

Note that the paths corresponding to outsourcing consist of single links. In addition, these

links are not contained in any other paths in the network.

For the convenience of expression, let

vk ≡
∑

p∈Pwk

xp, k = 1, . . . , nR, (1)

where vk can be interpreted as the projected demand at demand market k; k = 1, . . . , nR.

We assume that the demand at each demand point is uncertain with a known probability

distribution. Let dk denote the demand at demand point k; k = 1, . . . , nR, which is a

random variable with probability density function given by Fk(t). Let Pk be the probability

distribution function of dk, that is, Pk(Dk) = Pk(dk ≤ Dk) =
∫ Dk
0 Fk(t)d(t). Then,

∆−
k ≡ max{0, dk − vk}, k = 1, . . . , nR, (2)

∆+
k ≡ max{0, vk − dk}, k = 1, . . . , nR, (3)
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where ∆−
k and ∆+

k represent the supply shortage and surplus at demand point k, respectively.

It has been argued by researchers that the demand in networks such as humanitarian aid

supply chains is uncertain. At the same time, a relatively prompt response time may be

required. It is, therefore, imperative for the cognizant organization to be fully prepared in

terms of demand estimation in order to be able to fulfill the demand in a timely fashion (see,

e.g., Altay (2008), Beamon and Kotleba (2006)).

The expected values of ∆−
k and ∆+

k are given by:

E(∆−
k ) =

∫ ∞

vk

(t− vk)Fk(t)d(t), k = 1, . . . , nR, (4)

E(∆+
k ) =

∫ vk

0
(vk − t)Fk(t)d(t), k = 1, . . . , nR. (5)

We assume that the unit penalty of supply shortage at demand point k is λ−k and that of

supply surplus is λ+
k . The expected total penalty at demand point k; k = 1, . . . , nR, is,

hence,

E(λ−k ∆−
k + λ+

k ∆+
k ) = λ−k E(∆−

k ) + λ+
k E(∆+

k ). (6)

Note that λ+
k denotes the unit penalty cost of having excessive supply at k, which includes

the inventory cost, the cost of obsolescence for a perishable product, as well as the disposal

cost, if relevant. λ−k , in turn, denotes the unit penalty cost of having a supply shortage at

k, which corresponds to the social cost, associated with the loss of the well-being of the

population, due to a shortage. Similar examples of penalty costs due to excessive supplies

as well as to shortages, respectively, can be found in the literature (see, e.g., Dong, Zhang,

and Nagurney (2004) and Nagurney and Matsypura (2005)). In the case of critical needs

products such penalty costs are especially relevant since excessive supplies of critical needs

products may lead to waste and environmental damage whereas shortages of critical needs

products may lead to suffering and even death. These penalties can be assessed by the

authority who is contracting with the organization to deliver the critical needs product.

In addition, we let fa denote the flow of the product on link a. Hence, we must have the

following conservation of flow equations satisfied:

fa =
∑
p∈P

xpδap, ∀a ∈ L, (7)
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that is, the total amount of a product on a link is equal to the sum of the flows of the product

on all paths that utilize that link.

Of course, we also have that the path flows must be nonnegative, that is,

xp ≥ 0, ∀p ∈ P, (8)

since the product will be produced in nonnegative quantities.

We group the path flows, the link flows, and the projected demands into the respective

vectors x, f , and v.

The total cost on a link, be it a manufacturing/production link, a shipment link, or a

storage link is assumed to be a function of the flow of the product on the link; see, for

example, Nagurney (2006, 2009a) and the references therein. We have, thus, that

ĉa = ĉa(fa), ∀a ∈ L. (9a)

The total cost on an outsource link is also of the form in (9a), with the proviso that

we assume a fixed positive price ρa charged for a unit of the product, which is negotiated

between the outsource firm associated with that link and the organization. Hence, the total

cost on an outsource link a takes the explicit form:

ĉa = ρafa, ∀a ∈ L2. (9b)

We assume that the total cost on each link is convex and is continuously differentiable.

We denote the nonnegative existing capacity on a link a by ūa, ∀a ∈ L. Note that the

organization can add capacity to the “in house” link a; ∀a ∈ L1. We denote the total

investment cost of adding capacity ua on link a by π̂a, ∀a ∈ L1, and assume that

π̂a = π̂a(ua), ∀a ∈ L1, (10)

that is, the total cost associated with adding capacity ua on link a is a function of the

added capacity on the link. These functions are assumed to be convex and continuously

differentiable. We group the added link capacities into the vector u.
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We note that the above assumptions on the underlying functions are not unreasonable

since we are dealing with continuous variables and similar assumptions have been made for

transportation network links as well as other supply chain links, including manufacturing

links in the literature (see, e.g., Nagurney (2006)).

The supply chain network design optimization problem for critical needs faced by the

organization can be expressed as follows. The organization seeks to determine the optimal

levels of product processed on each supply chain network link (including the outsourcing

links) coupled with the optimal levels of capacity investments in its supply chain network

activities subject to the minimization of the total cost. The total cost includes the total cost

of operating the various links, the total cost of capacity investments, and the expected total

supply shortage/surplus penalty. Hence, the organization must solve the following problem:

Minimize
∑
a∈L

ĉa(fa) +
∑

a∈L1

π̂a(ua) +
nR∑
k=1

(λ−k E(∆−
k ) + λ+

k E(∆+
k )) (11)

subject to: constraints (1), (7), (8), and

fa ≤ ūa + ua, ∀a ∈ L1, (12)

fa ≤ ūa, ∀a ∈ L2, (13)

0 ≤ ua, ∀a ∈ L1. (14)

Constraint (13) reflects that the outsource firms cannot produce/deliver more of the

product than their existing capacity on the corresponding link. Constraint (14) indicates that

the existing capacities are not allowed to be reduced in this problem, but can be increased

or remain unchanged. Constraint (12), in turn, guarantees that the product flow on a link

does not exceed that link’s capacity.

The first variational inequality that we will present below is in path flows (rather than in

link flows) since such a formulation will enable for a very elegant and simple computation of

solutions. Towards that end, in view of (1) through (5), we note that λ−k E(∆−
k ) + λ+

k E(∆+
k )

is a function of the path flow vector x. Objective function (11), in light of the above, and

in lieu of (7), can, hence, be expressed solely in terms of the path flow variables and the
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capacity enhancement variables, and the same holds true for the constraints (12) through

(14) with the proviso that we also retain (8).

We now present some additional preliminaries. For each O/D pair wk,

∂E(∆−
k )

∂xp

=
∂E(∆−

k )

∂vk

· ∂vk

∂xp

= Pk

 ∑
p∈Pwk

xp

− 1, ∀p ∈ Pwk
, (15)

∂E(∆+
k )

∂xp

=
∂E(∆+

k )

∂vk

· ∂vk

∂xp

= Pk

 ∑
p∈Pwk

xp

 , ∀p ∈ Pwk
, (16)

and
∂2

∂x2
p

[λ−k E(∆−
k ) + λ+

k E(∆+
k )] = (λ−k + λ+

k )Fk

 ∑
p∈Pwk

xp

 , ∀p ∈ Pwk
. (17)

Hence, it is obvious that λ−k E(∆−
k ) + λ+

k E(∆+
k ) is convex.

Clearly, the solution of the above optimization problem will yield the product flows and

the link capacities that minimize the total costs associated with the supply chain network

design faced by the organization. Under the above imposed assumptions, the optimization

problem is a convex optimization problem.

We associate the Lagrange multiplier ωa with constraint (12) for link a ∈ L1 and we

denote the associated optimal Lagrange multiplier by ω∗a. Similarly, Lagrange multiplier γa

is associated with constraint (13) for link a ∈ L2 with the optimal multiplier denoted by γ∗a.

These two terms may also be interpreted as the price or value of an additional unit of capacity

on link a. We group these Lagrange multipliers into the vectors ω and γ, respectively.

Let K denote the feasible set such that

K ≡ {(x, u, ω, γ)|x ∈ RnP
+ , u ∈ R

nL1

+ , ω ∈ R
nL1

+ , and γ ∈ R
nL2

+ }.

We now state the following result in which we provide variational inequality formulations

of the problem in both path flows and in link flows, respectively.
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Theorem 1

The optimization problem (11), subject to the constraints above, is equivalent to the varia-

tional inequality problem: determine the vector of optimal path flows, the vector of optimal

link capacity enhancements, and the vectors of optimal Lagrange multipliers (x∗, u∗, ω∗, γ∗) ∈
K, such that:

nR∑
k=1

∑
p∈Pwk

∂Ĉp(x
∗)

∂xp

+
∑

a∈L1

ω∗aδap +
∑

a∈L2

γ∗aδap + λ+
k Pk

 ∑
p∈Pwk

x∗p

− λ−k

1− Pk

 ∑
p∈Pwk

x∗p


×[xp − x∗p]

+
∑

a∈L1

[
∂π̂a(u

∗
a)

∂ua

− ω∗a

]
× [ua − u∗a] +

∑
a∈L1

[ūa + u∗a −
∑
p∈P

x∗pδap]× [ωa − ω∗a]

+
∑

a∈L2

[ūa −
∑
p∈P

x∗pδap]× [γa − γ∗a] ≥ 0, ∀(x, u, ω, γ) ∈ K, (18)

where ∂Ĉp(x)
∂xp

≡ ∑
a∈L

∂ĉa(fa)
∂fa

δap for paths p ∈ Pwk
; k = 1, . . . , nR.

In addition, (18) can be reexpressed in terms of links flows as: determine the vector of

optimal link flows, the vectors of optimal projected demands and link capacity enhancements,

and the vectors of optimal Lagrange multipliers (f ∗, v∗, u∗, ω∗, γ∗) ∈ K1, such that:

∑
a∈L1

[
∂ĉa(f

∗
a )

∂fa

+ ω∗a

]
×[fa−f ∗a ]+

∑
a∈L2

[
∂ĉa(f

∗
a )

∂fa

+ γ∗a

]
×[fa−f ∗a ]+

∑
a∈L1

[
∂π̂a(u

∗
a)

∂ua

− ω∗a

]
×[ua − u∗a]

+
nR∑
k=1

[
λ+

k Pk(v
∗
k)− λ−k (1− Pk(v

∗
k))

]
× [vk − v∗k]

+
∑

a∈L1

[ūa + u∗a − f ∗a ]× [ωa − ω∗a]

+
∑

a∈L2

[ūa − f ∗a ]× [γa − γ∗a] ≥ 0, ∀(f, v, u, ω, γ) ∈ K1, (19)

where K1 ≡ {(f, v, u, ω, γ)|∃x ≥ 0, and (1), (7), (8), and (14) hold, and ω ≥ 0, γ ≥ 0}.

Proof: See Bertsekas and Tsitsiklis (1989) page 287.
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Note that both variational inequalities (18) and (19) can be put into standard form (see

Nagurney (1993)): determine X∗ ∈ K such that:

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K, (20)

where 〈·, ·〉 denotes the inner product in n-dimensional Euclidean space. We utilize the path

flow formulation (18) since it yields very simple expressions for algorithmic computations;

hence, we now put (18) into standard form (20). We define the column vectors: X ≡
(x, u, ω, γ) and F (X) ≡ (F1(X), F2(X), F3(X), F4(X)), such that

F1(X) = [
∂Ĉp(x)

∂xp

+
∑

a∈L1

ωaδap +
∑

a∈L2

γaδap + λ+
k Pk

 ∑
p∈Pwk

xp

− λ−k

1− Pk

 ∑
p∈Pwk

xp

 ;

p ∈ Pwk
; k = 1, . . . , nR], F2(X) =

[
∂π̂a(ua)

∂ua

− ωa; a ∈ L1

]
,

F3(X) =

ūa + ua −
∑
p∈P

xpδap; a ∈ L1

 , F4(X) =

ūa −
∑
p∈P

xpδap; a ∈ L2

 .

Also, we define K ≡ K. Then (18) can be reexpressed as (20).

Specifically, variational inequality (18) can be easily solved using the Euler method, which

is induced by the general iterative scheme of Dupuis and Nagurney (1993) and which we fully

discuss in Section 3. In particular, because of the variational inequality formulation (18),

the Euler method will yield, at each iteration, closed form expressions for the path flows,

the link capacity enhancements, and the Lagrange multipliers.

Once we have solved problem (18) we can obtain the solution (f ∗, u∗) (by using (7), which

relates the link flows to the path flows) that minimizes the total cost (cf. (11)) associated

with the design of the supply chain network for critical needs.

2.1 Applications to Vaccine Production and Emergency Preparedness and Hu-

manitarian Logistics

We now discuss two specific applications of the above model. The first application is to

the production of H1N1 vaccine and the second application is to a specific humanitarian

logistics operation which also illustrates the importance of emergency preparedness.
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Consider a vaccine manufacturer such as Sanofi-Aventis who is gearing up for next year’s

production of H1N1 (swine) flu vaccine. Since it already has been involved in such a vaccine

production this year it has some existing capacity. Governments around the world are

beginning to contract with this company for next year’s flu vaccine. By applying the general

theoretical model to the company’s data, which would also include the projected demand

forecasts based on the needs of the populations that it is to serve (and based on information

provided by the contracting governments), the firm can determine whether it needs to expand

its facilities (or not), how much of the vaccine to produce where, how much to store where,

and how much to have shipped to the various demand points. Also, it can determine whether

it should outsource any of its vaccine production and at what level. The solution of the model

yields the minimal total cost with the inclusion of penalties, which we can expect, in this

application, to be higher for underproduction and lower for overproduction. These penalties,

in this case, can be assessed also by the contracting governments. The firm by solving the

model with its company-relevant data can then ensure that the price that it receives for its

vaccine production and delivery is appropriate and that it recovers its incurred costs and

obtains, if negotiated correctly, an equitable profit.

Another application is to emergency preparedness and humanitarian logistics. In Au-

gust 2005 Hurricane Katrina hit the US and this natural disaster cost immense damage

with repercussions that continue to this day. Wal-Mart, the global corporation, was at the

forefront of hurricane relief (see Barbara and Gillis (2005)). While US state and federal

officials came under severe criticism for their handling of the storm’s aftermath, Wal-Mart

had prepared in advance and through its logistical efficiencies had dozens of trucks loaded

with supplies for delivery before the hurricane even hit landfall. It was able to deliver much

needed supplies in the form of food and water to the needy citizens and took advantage of

its major distribution center which is located in the state of Mississippi.

A company can, using the above model, prepare and plan for an emergency such as a

natural disaster in the form of a hurricane and identify where to store a necessary product

(such as food packets, for example) so that the items can be delivered to the demand points

in a timely manner and at minimal total cost. Note that, in the case of Wal-Mart and

Hurricane Katrina, Wal-Mart had existing capacity in the form of its large distribution

center and numerous stores in the southern region of the US where Hurricane Katrina had
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its greatest physical impact. Hence, it was able to distribute needed supplies and, in addition,

achieved an enormous amount of goodwill.

2.2 Simple Supply Chain Network Design Numerical Examples

In order to further illustrate the above model, we now present several simple examples.

Consider the supply chain network topology in Figure 2 in which the organization is

considering a single manufacturing plant, a single distribution center for storing the critical

need product and is to serve a single demand point. The links are labeled as in Figure 2,

that is, a, b, c, d, and e, with e denoting the outsourcing link.

Below we provide solutions to four supply chain network design examples, all of which

consider the initial topology given in Figure 2.

Organization

e

1k
a

?
M1

k
?
b

D1,1
k
c

?

d

D1,2
k
?kR1

Demand Point

Figure 2: Simple Network for the Numerical Examples
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Example 1

The total cost functions on the links were:

ĉa(fa) = .5f 2
a + fa, ĉb(fb) = .5f 2

b + 2fb, cc(fc) = .5f 2
c + fc, ĉd(fd) = .5f 2

d + 2fd,

ĉe(fe) = 5fe.

The investment capacity cost functions were: π̂a(ua) = .5u2
a + ua, ∀a ∈ L1.

The existing capacities were: ūa = 0, ∀a ∈ L1, and ūe = 2.

The paths were defined as: p1 = (a, b, c, d) and p2 = e with O/D pair w1 = (1, R1).

We assumed that the demand for the product followed a uniform distribution on the

interval [0, 10] so that: P1(
∑

p∈Pw1
xp) =

∑
p∈Pw1

xp

10
.

The penalties were: λ−1 = 10, λ+
1 = 0.

The path flow solution was: x∗p1
= 0.00, x∗p2

= 2.00, which corresponds to the link flow

pattern: f ∗a = f ∗b = f ∗c = f ∗d = 0.00, f∗e = 2.00.

The capacity investments were: u∗a = 0.00, ∀a ∈ L1.

The optimal Lagrange multipliers were: ω∗a = 1.00, ∀a ∈ L1, γ∗e = 3.00.

Hence, the critical product was obtained and delivered to the demand point exclusively

through outsourcing.

It is easy to verify that, indeed, the above solution satisfies variational inequality (18).

Since the current capacities in the “in-house” supply chain links are zero, it is more costly

to expand them than to outsource. Consequently, the organization chooses to outsource the

product for production and delivery. The optimal supply chain network design for Example

1, hence, corresponds to the network in Figure 2 but with the only remaining link being link

e since the capacities (and flows) on all other links are zero at the optimal solution.
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Example 2

Example 2 had the same data as Example 1 except that we now increased the penalty

associated with product shortage from 10 to 50, that is, we now set λ−1 = 50.

The new solution was as follows. The path flow solution was now: x∗p1
= 2.31, x∗p2

=

2.00, which corresponds to the link flow pattern: f ∗a = f ∗b = f ∗c = f ∗d = 2.31, f∗e = 2.00.

The capacity investments were: u∗a = 2.31, ∀a ∈ L1.

The optimal Lagrange multipliers were: ω∗a = 3.31, ∀a ∈ L1, γ∗e = 23.46.

Hence, the critical product was now manufactured and distributed by the organization

and also outsourced.

Since the penalty cost for under-supplying is increased, the organization increased its

“in-house” capacity and product output. The optimal supply chain network design is as in

Figure 2 since now all links have positive capacities and flows.

Example 3

Example 3 had the same data as Example 2 except that ūa = 3 for all the links a ∈ L1.

This means that the organization does not have to construct its supply chain activities from

scratch as in Examples 1 and 2 but does have some existing capacity.

The new path flow solution was: x∗p1
= 3.23, x∗p2

= 2.00, which corresponds to the link

flow pattern: f ∗a = f ∗b = f ∗c = f ∗d = 3.23, f∗e = 2.00.

The capacity investments were: u∗a = 0.23, ∀a ∈ L1.

The optimal Lagrange multipliers were: ω∗a = 1.23, ∀a ∈ L1, γ∗e = 18.84.

Given the existing capacities in the “in-house” supply chain links, the organization chooses

to supply more critical product from the local manufacturers and distributors. The optimal

supply chain network design remains as in Figure 2 since now all links have positive capacities

and flows.
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Example 4

Example 4 had the total cost functions on the links given by:

ĉa(fa) = f 2
a , ĉb(fb) = f 2

b , cc(fc) = f 2
c , ĉd(fd) = f 2

d , ĉe(fe) = 100fe.

The investment capacity cost functions were: π̂a(ua) = u2
a, ∀a ∈ L1.

The existing capacities were: ūa = 10, ∀a ∈ L.

The paths were defined, as in the previous examples, that is: p1 = (a, b, c, d) and p2 = e.

We assumed that the demand followed a uniform distribution on the interval [10, 20] so

that

P1(
∑

p∈Pw1

xp) =

∑
p∈Pw1

xp − 10

10
.

The penalties were: λ−1 = 1000, λ+
1 = 10.

The path flow solution was: x∗p1
= 11.25, x∗p2

= 7.66, which corresponds to the link flow

pattern: f ∗a = f ∗b = f ∗c = f ∗d = 11.25, f∗e = 7.66.

The capacity investments were: u∗a = 1.25, ∀a ∈ L1.

The optimal Lagrange multipliers were: ω∗a = 2.50, ∀a ∈ L1, γ∗e = 0.00.

In this example, since the penalty cost for under-supplying is much higher than that

of over-supplying, the organization needs to both expand the “in-house” capacities and to

outsource the production and delivery of the product to the demand point.

3. The Algorithm

In this Section, we recall the Euler method, which is induced by the general iterative

scheme of Dupuis and Nagurney (1993). Its realization for the solution of supply chain net-

work design problems governed by variational inequality (18) (and (20)) yields subproblems

that can be solved explicitly and in closed form.

Specifically, recall that at an iteration τ of the Euler method (see also Nagurney and
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Zhang (1996)) one computes:

Xτ+1 = PK(Xτ − aτF (Xτ )), (21)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem: determine X∗ ∈ K such that

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K, (22)

where 〈·, ·〉 is the inner product in n-dimensional Euclidean space, X ∈ Rn, and F (X) is an

n-dimensional function from K to Rn, with F (X) being continuous (see also (20)).

As shown in Dupuis and Nagurney (1993); see also Nagurney and Zhang (1996), for

convergence of the general iterative scheme, which induces the Euler method, among other

methods, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ → ∞.

Specific conditions for convergence of this scheme can be found for a variety of network-based

problems, similar to those constructed here, in Nagurney and Zhang (1996) and the references

therein. Applications to the solution of network oligopolies and spatial network equilibria can

be found, respectively, in Nagurney, Dupuis, and Zhang (1994) and in Nagurney, Takayama,

and Zhang (1995). We also note the collection of interesting papers with both models and

algorithms for a variety of network-based problems, including dynamic ones, in the volume

edited by Friesz (2007).

Explicit Formulae for the Euler Method Applied to the Supply Chain Network

Design Variational Inequality (18)

The elegance of this procedure for the computation of solutions to the supply chain network

design problem modeled in Section 2 can be seen in the following explicit formulae. Indeed,

(21) for the supply chain design network problem governed by variational inequality problem

(18) yields the following closed form expressions for the product path flows, the capacity

enhancement capacities, and the Lagrange multipliers, respectively:

xτ+1
p = max{0, xτ

p + aτ (λ
−
k (1− Pk(

∑
p∈Pwk

xτ
p))− λ+

k Pk(
∑

p∈Pwk

xτ
p)

−∂Ĉp(x
τ )

∂xp

−
∑

a∈L1

ωτ
aδap −

∑
a∈L2

γτ
aδap)}, ∀p ∈ P ; (23)
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uτ+1
a = max{0, uτ

a + aτ (ω
τ
a −

∂π̂a(u
τ
a)

∂ua

)}, ∀a ∈ L1; (24)

ωτ+1
a = max{0, ωτ

a + aτ (
∑
p∈P

xτ
pδap − ūa − uτ

a)}, ∀a ∈ L1. (25)

γτ+1
a = max{0, γτ

a + aτ (
∑
p∈P

xτ
pδap − ūa)}, ∀a ∈ L2. (26)

In the next Section, we solve additional supply chain network design problems using the

above algorithmic scheme.

4. Additional Numerical Examples

The Euler method for the solution of variational inequalities (18) was implemented in

FORTRAN. A Unix system at the University of Massachusetts Amherst was used for all the

computations below. We set the sequence aτ = .1(1, 1
2
, 1

2
, . . .). The convergence tolerance

was ε = 10−5. We initialized the algorithm by setting the projected demand to 100 at each

demand point and by equally distributing it among the paths joining node 1 to each demand

point. All other variables were initialized to zero.

The supply chain network topology for all the examples in this Section is as depicted

in Figure 3 with the links defined by numbers as in Figure 3. The numerical examples,

hence, consisted of an organization faced with 3 possible manufacturing plants, 2 distribution

centers, and had to supply the 3 demand points. Also, as in Figure 3, we assumed that there

were 3 outsourcing possibilities, with each such firm (or firms) serving a specific demand

point.

The data for the specific examples along with the solutions are reported in the corre-

sponding tables below. The solutions are reported in link form due to the number of paths.
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Figure 3: The Supply Chain Network Topology G = [N, L] for the Examples in Section 4
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Example 5

We assumed that the demands at the three demand points followed a uniform probability

distribution function on the intervals [0, 10], [0, 20], and [0, 30], respectively, so that

P1(
∑

p∈Pw1

xp) =

∑
p∈Pw1

xp

10
,

P2(
∑

p∈Pw2

xp) =

∑
p∈Pw2

xp

20
,

P3(
∑

p∈Pw3

xp) =

∑
p∈Pw3

xp

30
,

where w1 = (1, R1), w2 = (1, R2), and w3 = (1, R3).

The penalties were:

λ−1 = 50, λ+
1 = 0,

λ−2 = 50, λ+
2 = 0,

λ−3 = 50, λ+
3 = 0.

The capacities associated with the three outsourcing links were:

ū18 = 5, ū19 = 10, ū20 = 5.

We set ūa = 0 for all links a ∈ L1, that is, the organization begins its supply chain network

activities from “scratch” and is assumed in this example to have no existing capacities.

The total cost functions were as reported in Table 1 where we also provide the computed

solution using the Euler method.

Note that the optimal supply chain network design for Example 5 is, hence, as in Figure

3 but with links 13, 15, and 16 removed since those links have zero capacities and associated

flows. Note that the organization took advantage of outsourcing to the full capacity available.
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Table 1: Total Cost Functions and Solution for Example 5

Link a ĉa(fa) π̂a(ua) f ∗a u∗a ω∗a γ∗a
1 f 2

1 + 2f1 .5u2
1 + u1 1.34 1.34 2.34 –

2 .5f 2
2 + f2 .5u2

2 + u2 2.47 2.47 3.47 –
3 .5f 2

3 + f3 .5u2
3 + u3 2.05 2.05 3.05 –

4 1.5f 2
4 + 2f4 .5u2

4 + u4 0.61 0.61 1.61 –
5 f 2

5 + 3f5 .5u2
5 + u5 0.73 0.73 1.73 –

6 f 2
6 + 2f6 .5u2

6 + u6 0.83 0.83 1.83 –
7 .5f 2

7 + 2f7 .5u2
7 + u7 1.64 1.64 2.64 –

8 .5f 2
8 + 2f8 .5u2

8 + u8 1.67 1.67 2.67 –
9 f 2

9 + 5f9 .5u2
9 + u9 0.37 0.37 1.37 –

10 .5f 2
10 + 2f10 .5u2

10 + u10 3.11 3.11 4.11 –
11 f 2

11 + f11 .5u2
11 + u11 2.75 2.75 3.75 –

12 .5f 2
12 + 2f12 .5u2

12 + u12 0.04 0.04 1.04 –
13 .5f 2

13 + 5f13 .5u2
13 + u13 0.00 0.00 0.45 –

14 f 2
14 .5u2

14 + u14 3.07 3.07 4.07 –
15 f 2

15 + 2f15 .5u2
15 + u15 0.00 0.00 0.45 –

16 .5f 2
16 + 3f16 .5u2

16 + u16 0.00 0.00 0.45 –
17 .5f 2

17 + 2f17 .5u2
17 + u17 2.75 2.75 3.75 –

18 10f18 – 5.00 – – 14.77
19 12f19 – 10.00 – – 13.00
20 15f20 – 5.00 – – 16.96
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Table 2: Total Cost Functions and Solution for Example 6

Link a ĉa(fa) π̂a(ua) f ∗a u∗a ω∗a γ∗a
1 f 2

1 + 2f1 .5u2
1 + u1 1.84 0.00 0.00 –

2 .5f 2
2 + f2 .5u2

2 + u2 4.51 0.00 0.00 –
3 .5f 2

3 + f3 .5u2
3 + u3 3.85 0.00 0.00 –

4 1.5f 2
4 + 2f4 .5u2

4 + u4 0.88 0.00 0.00 –
5 f 2

5 + 3f5 .5u2
5 + u5 0.97 0.00 0.00 –

6 f 2
6 + 2f6 .5u2

6 + u6 1.40 0.00 0.00 –
7 .5f 2

7 + 2f7 .5u2
7 + u7 3.11 0.00 0.00 –

8 .5f 2
8 + 2f8 .5u2

8 + u8 3.47 0.00 0.00 –
9 f 2

9 + 5f9 .5u2
9 + u9 0.38 0.00 0.00 –

10 .5f 2
10 + 2f10 .5u2

10 + u10 5.75 0.00 0.00 –
11 f 2

11 + f11 .5u2
11 + u11 4.46 0.00 0.00 –

12 .5f 2
12 + 2f12 .5u2

12 + u12 0.82 0.00 0.00 –
13 .5f 2

13 + 5f13 .5u2
13 + u13 0.52 0.00 0.00 –

14 f 2
14 .5u2

14 + u14 4.41 0.00 0.00 –
15 f 2

15 + 2f15 .5u2
15 + u15 0.00 0.00 0.00 –

16 .5f 2
16 + 3f16 .5u2

16 + u16 0.05 0.00 0.00 –
17 .5f 2

17 + 2f17 .5u2
17 + u17 4.41 0.00 0.00 –

18 10f18 – 5.00 – – 10.89
19 12f19 – 10.00 – – 11.59
20 15f20 – 5.00 – – 11.96

Example 6

Example 6 had the identical data to that in Example 5 except that we now assumed that

the organization had capacities on its supply chain network activities where ūa = 10, for all

a ∈ L1. The complete data for Example 6 and the solution are given in Table 2. As can be

seen from Table 2, links 13 and 15 now have positive associated flows although at very low

levels.

Example 7

Example 7 had the same data as Example 6 except that we changed the probability distri-
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butions so that we now had:

P1(
∑

p∈Pw1

xp) =

∑
p∈Pw1

xp

110
,

P2(
∑

p∈Pw2

xp) =

∑
p∈Pw2

xp

120
,

P3(
∑

p∈Pw3

xp) =

∑
p∈Pw3

xp

130
.

The complete total cost data and solution for Example 7 are reported in Table 3. The

optimal supply chain network design for Example 7 has the topology given in Figure 3 since

there are now positive flows on all the links. It is also interesting to note the increase in

production volumes by the organization at its manufacturing plants; see f ∗1 , f ∗2 , and f ∗3

in Table 3, as compared to the analogous flows for Examples 5 and 6 in Tables 1 and 2,

respectively.
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Table 3: Total Cost Functions and Solution for Example 7

Link a ĉa(fa) π̂a(ua) f ∗a u∗a ω∗a γ∗a
1 f 2

1 + 2f1 .5u2
1 + u1 4.23 0.00 0.00 –

2 .5f 2
2 + f2 .5u2

2 + u2 9.06 0.00 0.00 –
3 .5f 2

3 + f3 .5u2
3 + u3 8.61 0.00 0.00 –

4 1.5f 2
4 + 2f4 .5u2

4 + u4 2.05 0.00 0.00 –
5 f 2

5 + 3f5 .5u2
5 + u5 2.18 0.00 0.00 –

6 f 2
6 + 2f6 .5u2

6 + u6 3.28 0.00 0.00 –
7 .5f 2

7 + 2f7 .5u2
7 + u7 5.77 0.00 0.00 –

8 .5f 2
8 + 2f8 .5u2

8 + u8 7.01 0.00 0.00 –
9 f 2

9 + 5f9 .5u2
9 + u9 1.61 0.00 0.00 –

10 .5f 2
10 + 2f10 .5u2

10 + u10 12.34 2.34 3.34 –
11 f 2

11 + f11 .5u2
11 + u11 9.56 0.00 0.00 –

12 .5f 2
12 + 2f12 .5u2

12 + u12 5.82 0.00 0.00 –
13 .5f 2

13 + 5f13 .5u2
13 + u13 2.38 0.00 0.00 –

14 f 2
14 .5u2

14 + u14 4.14 0.00 0.00 –
15 f 2

15 + 2f15 .5u2
15 + u15 2.09 0.00 0.00 –

16 .5f 2
16 + 3f16 .5u2

16 + u16 2.75 0.00 0.00 –
17 .5f 2

17 + 2f17 .5u2
17 + u17 4.72 0.00 0.00 –

18 10f18 – 5.00 – – 34.13
19 12f19 – 10.00 – – 31.70
20 15f20 – 5.00 – – 29.66
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Remark

In Tables 1, 2, and 3, there are no γ∗a values for links 1 through 17 since we assumed that the

organization has no existing capacities. Furthermore, links 18, 19, and 20 are outsourcing

links and they do not have any capacities. Hence, the associated capacity investment costs

and the Lagrange multipliers are not needed in the formulation and solution.

5. Summary and Conclusions

In this paper, we developed an integrated framework for the design of supply chain

networks for critical products such as vaccines, medicines, food, etc., which may be used

in preparation (and response) to pandemics, disasters, attacks, etc. The model utilizes cost

minimization within a system-optimization perspective as the primary objective and captures

rigorously the uncertainty associated with the demand for critical products at the various

demand points. In addition, the supply chain network design model allows for the investment

of enhanced link capacities associated with such supply chain activities as manufacturing,

storage, and distribution. Moreover, it allows for nonnegative initial capacities on the supply

chain activities that the organization controls. The organization contracts the outsource

product volumes at a fixed price. Finally, the model allows for the investigation of whether

the product should be outsourced or produced in-house.

The methodology that we utilize for the formulation and solution of the supply chain

network design model for critical needs is that of the theory of variational inequalities.

The formulation allows for the implementation of an algorithm which yields very simple

subproblems at each iteration, each of which can be solved explicitly and in closed form.

Indeed, since the model makes use of continuous variables exclusively (as opposed to binary

variables) and this feature enables effective and efficient solution of numerical problems based

on this framework.

The framework developed here can be applied in numerous situations in which the goal

is to produce and deliver a critical product at minimal cost so as to satisfy the demand at

various demand points, as closely as possible, given associated penalties for under-supply

(and, if also relevant, for over-supply, which we expect to be lower than the former).
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The model is discussed in the context of distinct applications, specifically, to vaccine

production as well as to emergency preparedness and humanitarian logistics. The model is

also illustrated with a spectrum of numerical examples for which the optimal product flows,

investment capacities, as well as Lagrange multipliers associated with the constraints are

computed.

This paper is a contribution to the literature of supply chain networks with a focus on

design and humanitarian and healthcare applications.
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