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Abstract

In this paper, a closed-loop supply chain network is investigated with decentralized
decision-makers consisting of raw material suppliers, retail outlets, and the manufac-
turers that collect the recycled product directly from the demand market. We derive
the optimality conditions of the various decision-makers, and establish that the gov-
erning equilibrium conditions can be formulated as a finite-dimensional variational
inequality problem. We establish convergence of the proposed algorithm that can al-
low for the discussion of the effects of competition, distribution channel investment,
yield and conversion rates, combined with uncertainties in demand, on equilibrium
quantity transactions and prices. Numerical examples are provided for illustration.
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1. Introduction

The path toward sustainability to demonstrate environmental and social responsibil-
ity has led to an increasing attention to the lifecycle of a product with a focus on
value-added recovery activities [1,2]. For example, in 2007 alone, Kodak collected 120
million single-use cameras [3], and in 2000, Fuji Xerox was the first to achieve zero
landfill of used products in Japan [4,5]. The study of closed-loop supply chain (CLSC)
networks is used to maximize the value created from product take-back, recovery, and
re-distribution which reuses the entire product, and/or some of its modules [6,7,8].
Product take-back activities have received attention, in part, by legislation such as the
Paper Recycling Directive, the End-of-Life Vehicle Directive, and the Waste Electrical
and Electronic Equipment Directive (WEEE) within the European Union, intended
to give manufacturers incentives to reduce the environmental burden of their end-of-
life (EOL) products, while also removing the growing waste management cost from
municipal governments [9].

Even before the emergence of product take-back laws, some firms were already par-
ticipating in voluntary product recovery, as reported by Kodak, FujiFilm, Hewlett-
Packard, IBM Europe, and Xerox to name a few. An environmentally friendly firm
can use a sustainable product program as a strategic tool for not only environmental
improvement, but to enhance the environmental image of their brand, generate rev-
enue, serve their customers, and reduce production costs [10]. For example, on a life
cycle basis, remanufacturing photocopiers consumes 20-70% less materials, labor, and
energy and generates 35-50% less waste than conventional manufacturing using virgin
materials [11]. Additionally, production costs are further reduced since the cost for a
remanufactured part is generally 30-50% less than a new part would be [9].

There is an abundant amount of research available on the topic of CLSC management.
For a comprehensive review of published literatures we refer the reader to the work of
[12,13,14,15]. Based on the concept of equilibrium, first explored in a general forward
supply chain setting by Nagurney et al. [16], Nagurney and Toyasaki [17] provide a
variational inequality CLSC formulation model which involve manufacturers, retailers,
and demand markets, with the inclusion of recycling. Subsequently, Yang et al. [18]
expanded on the work of Nagurney and Toyasaki [17], and incorporated the work of
Hammond and Beullens [19] and Sheu et al. [20], to strategically model the oligopolis-
tic closed-loop supply chain, which include manufacturers who are involved in the
production of a homogeneous commodity from raw materials and reusable materials,
and recovery centers that can get subsidies from government organizations.

However, there is limited contribution in the literature that addresses the complexity
that arises from the large number of actors in a decentralized CLSC system [6], which
increases the intensity of competition, combined with significant product EOL issues
[21]. This paper provides an innovative framework to study the effects of competition,
combined with distribution channel investment, yield and conversion rates, uncertain-
ties in demand, and the resulting implications on equilibrium quantity transactions
and prices in the CLSC network. In the subsequent paragraphs, we discuss the moti-
vation for the study of these issues since environmental recovery is an option that is
underutilized as firms are unsure how to mitigate the ambiguity surrounding economic

2



performance.

Interestingly, even though the remanufacturing sector is larger than the U.S. domestic
steel industry with annual sales over $53 billion [22], currently, very little, if any, value
is recovered by the manufacturer [6] due to various yield factors. For example, Hewlett-
Packard estimates that returns cost them as much as 2% of total outbound sales and
less than 50% of the value of those product returns are being recovered [23]. The
yield rate affects the viability of any recycling option by external factors such as the
product’s condition as a result of its utilization profile (affected by light vs heavy use
and individual care for the products) [24], the ambiguity related to the product material
content [25], and the product’s structural design and level of modularity, which may
make the disassembly process more or less difficult [26].

The economic viability of a recovery program is affected by not only the uncertainty in
yield, which takes into account the conversion rates of recycled components to “like-
new” products, but also the ambiguity surrounding customer demand [27]. Demand
uncertainty is a known problem faced by firms to determine suitable levels of out-
put before demand is known, which is classically known as the “newsboy” problem
in operational research literature [28,29,30]. Inderfurth [31] studied the impact of un-
certainties on recovery behavior but was restricted by stationary demands and return
patterns. They determined, however, that in a non-stationary situation the impact of
uncertainties could be even stronger, since excessive returns might happen more often.
Shi et al. [32] studied the production planning problem for a multi-product closed loop
system, in which the demands and their returns are uncertain and price-sensitive [33],
but developed the model to include only the manufacturer’s decision-making problem.
In particular, we note that Dong et al. [34] studied the demand uncertainties in the
decentralized supply chain network; but their model only considers the forward supply
chain network.

Finally, we assume the manufacturers’ recovery system investment is related to the
collection efforts of the EOL products directly from the demand market. A direct col-
lection system is evident in practice in response to increasing customers’ demands for
the removal of products as a service associated with the sale of new products. EOL
products are collected either with monetary compensation or as a free-of-charge dis-
posal where almost no costs are incurred to the end-users. Sprint PCS and Gateway
customers may be paid for used, working technology products through trade-in pro-
grams; Apple offers free computer take-back and recycling with the purchase of a new
Macintosh system; and Hewlett-Packard and Xerox Corporation provide free shipping
and cartridge boxes for customer returns [35]. Given this information, it would make
sense to include in our CLSC network model the assumption that the return rate and
volume of the used product flow depends on the level of manufacturers’ investment in
the direct collection system [36,37].

In summary, the major innovations and contributions that differentiate this paper from
the above mentioned works is: 1. We consider that the manufacturers can invest in
the reverse supply channel to increase the recycled product volume; 2. The CLSC
model captures the uncertainty in demand, which is associated with penalties, namely,
inventory and shortage costs; 3. Uncertain yield rate is modeled. We use the expected
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value since the probability distribution function of the yield rate is known. This in-
formation can be estimated based on historical data [38] and references therein. 4.
We simultaneously consider multiple decision-making entities such as the raw material
suppliers, the manufacturers, and the retailers, and study the equilibrium prices and
transactions.

The paper is organized as follows: In Section 2, we develop the CLSC network model
with decentralized decision-makers consisting of raw material suppliers, retail outlets,
and the manufacturers that collect the recycled product directly from the demand mar-
ket. We derive the optimality conditions of the various decision-makers, and establish
that the governing equilibrium conditions can be formulated as a finite-dimensional
variational inequality problem.

In Section 3, we study qualitative properties of the equilibrium pattern, and under
reasonable conditions, establish existence and uniqueness results. We discuss the char-
acteristics of the functions in the variational inequality that enable us to establish
convergence. This can allow for the discussion of the effects of competition, reverse
distribution channel investment, yield rates, combined with uncertainties demand on
equilibrium quantity transactions and prices. We illustrate the model by applying the
modified projection algorithm to CLSC numerical examples in Section 4. The paper
concludes with Section 5, in which we provide a summary of the paper and future
research directions.

2. The Closed-loop Supply Chain with Compe-

tition and Distribution Channel Investment with

Uncertainties in Yield and Demand

In this section, we develop the CLSC network model. In particular, we consider W

material suppliers involved in the supply of raw material to N manufacturers, who
make a homogenous product. Moreover, there are M retailers who deal with the
local demand markets and face uncertain demands. Each retailer is assumed to be
responsible for dealing with its own demand market. Such an assumption has been used
in CLSC literature (See [34] for example). Consumers in these demand markets can
return their used products to manufacturers at a price. We assume that the consumer
is indifferent in their demand for brand-new products or remanufactured returns into
as-new products, which is a common assumption used in the CLSC literature (cf. [39]).
Furthermore, manufacturers choose the level of investment in such “reverse distribution
channels” for the channel establishment and maintenance. It is reasonable to assume
that the higher the investment in these reverse channels, the higher volume of recycled
product the manufacturer can collect (we refer the reader to the discussion in the
Introduction [24,25]). The structure of the CLSC network is depicted in Figure 1.

We denote a typical raw material supplier by m, a typical manufacturer by i, and a
typical retailer/demand market by j. To make the presentation clear, we also list the
relevant variables/notations below:

• qw
mi is the amount of raw material supplier m sells to manufacture i (w stands for
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raw). Group these variables into a WN -dimensional column vector Qw.

• q
f
ij is the amount of product manufacture i sells to retailer j. Group these variables

into a NM -dimensional column vector Qf .

• qb
ji is the amount of used product sold by the consumers on demand market j

to manufacture i (b stands for backward) which depends on the manufacturer i’s
distribution channel investment Iji.

• Iji is the investment of manufacturer i on the reverse distribution channel with
the demand market j regarding recycled products. Group these variables into a
MN -dimensional column vector I.

• βmi is the conversion rate from the raw material of supplier m to products pro-
duced by manufacturer i;

• βi is the probability that a recycled product can be converted to a new product.
We assume that its probability distribution is known, denoted by F(βi). β̄i =
∫

βidF(βi) is the expected conversion rate from the used product;

• θb
i unit landfill cost for manufacture i;

• Bi budget of manufacturer i to invest in the reverse distribution channel.

1 m W 

1 i N 

1 j M 

Raw Material Supplier 

Manufacturer 

Retailer 

Reverse Chain Product Flow 

Forward Chain Product Flow 

Landfill 

… … 

… … 

… 
… 

Figure 1: Closed-loop Supply Chain

2.1 The Problem Faced by The Raw Material Suppliers

We assume that raw material supplier m faces a procurement cost function fw
m, which

can generally depend upon the material volume Qw. cw
mi is the transaction cost asso-

ciated with raw material supplier m transacting with manufacturer i. We assume that
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cw
mi also depends on Qw. Denote ρw∗

1m as the price charged by raw material supplier
m to all the manufacturers. Given the above notation, we can express the criterion of
profit maximization for raw material supplier m as:

Max
N

∑

i=1

ρw∗

1mqw
mi − fw

m(Qw) −
N

∑

i=1

cw
mi(Q

w) (1)

where qw
mi ≥ 0 ∀i.

We assume that fm(Qw) and cw
mi(Q

w) are continuous and convex. Furthermore, we
assume that raw material suppliers compete in a noncooperative fashion. Hence, the
optimality conditions for all raw material suppliers simultaneously (cf. [34]) can be
expressed as the following variational inequality: determine Qw∗ ∈ RWN

+ , satisfying

W
∑

m=1

N
∑

i=1

(−ρw∗

1m +
∂fw

m(Qw∗)

∂qw
mi

+
∂cw

mi(Q
w∗)

∂qw
mi

) × (qw
mi − qw∗

mi) ≥ 0, ∀Qw ∈ RWN
+ . (2)

2.2 The Problem Faced by The Manufacturers

Manufacturer i, who makes a profit by producing a homogeneous product (from both
raw and reusable materials), incurs production costs from both raw materials and re-
cycled materials, which is denoted by fi. Note that the production cost function, in
general, can depend on the entire production outputs of all manufacturers, which is
Qf . Similarly, we denote c

f
ij as the transaction cost of manufacturer i dealing with

retailer j in the forward supply chain, which also depends on Qf . Furthermore, cb
ji is

the transaction cost of manufacturer i dealing with the consumer at the market j in
the reverse distribution channel, which depends on the flow on the reverse distribu-
tion channel, Qb. We further assume that manufacturers can invest in these reverse
distribution channels and therefore, qb

ji depends on the investment level Iji.

Let ρ
f∗
2i denote the price charged by manufacture i for the transactions with the retail-

ers. ρb∗
4j is the price manufacturers pay the consumers at demand market j to collect

the recycled product. Furthermore, 1 − β̄i is the expected unusable portion of the
recycled product for manufacturer i, who face a unit landfill cost θb

i . Therefore, we can
express the criterion of the expected profit maximization for manufacturer i as:

Max
M
∑

j=1

ρ
f∗
2i q

f
ij − fi(Q

f ) −
M
∑

j=1

c
f
ij(Q

f ) −
M
∑

j=1

cb
ji(Q

b) −
W
∑

m=1

ρw∗

1mqw
mi −

M
∑

j=1

ρb∗
4jq

b
ji(Iji)

−
M
∑

j=1

θb
i (1 − β̄i)q

b
ji(Iji) −

M
∑

j=1

Iji (3)

subject to:
M
∑

j=1

Iji ≤ Bi (4)

M
∑

j=1

q
f
ij ≤

W
∑

m=1

βmiq
w
mi +

M
∑

j=1

β̄iq
b
ji(Iji) (5)
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and q
f
ij, q

b
ji, q

w
mi, Iji ≥ 0 ∀ i, j,m.

In Equation (3), the first term is the revenue of the manufacturer i from selling product
to retailers. The second, third, and fourth terms are his various cost functions. The
fifth term is his total payment to the raw material suppliers and the sixth term is his
total payment to the consumers to collect recycled products. Furthermore, the seventh
term is the landfill cost and finally, the last term is his total investment in the reverse
distribution channels. Equation (4) is manufacturer i’s investment budget constraint.
Equation (5) indicates the total output of manufacturer i cannot exceed the supply
from both raw material suppliers and the recycled products from consumers.

Furthermore, we assume that the production and transaction costs for each manufac-
turers are continuous and convex. We also assume that manufacturers compete in a
noncooperative fashion. Hence, the optimality conditions for all manufacturers simul-
taneously (cf. [41]) can be expressed as the following variational inequality: determine
(Qw∗, Qf∗, I∗, γ∗, λ∗) ∈ RWN+NM+MN+N+N

+ , satisfying

N
∑

i=1

M
∑

j=1



−ρ
f∗
2i +

∂fi(Q
f∗)

∂q
f
ij

+
∂c

f
ij(Q

f∗)

∂q
f
ij

+ λ∗

i



 × [qf
ij − q

f∗
ij ]

+
W
∑

m=1

N
∑

i=1

[ρw∗

1m − λ∗

i βmi] × [qw
mi − qw∗

mi ]

+
N

∑

i=1

M
∑

j=1

[

∂cb
ji(Q

b)

∂qb
ji

dqb
ji(I

∗

ji)

dIji
+ ρb∗

4j

dqb
ji(I

∗

ji)

dIji
+ θb

i (1 − β̄i)
dqb

ji(I
∗

ji)

dIji
− λ∗

i β̄i

dqb
ji(I

∗

ji)

dIji
+ 1 + γ∗

i

]

×[Iji − I∗ji] +
N

∑

i=1



Bi −
M
∑

j=1

I∗ji



× [γi − γ∗

i ] +
N

∑

i=1





W
∑

m=1

βmiq
w∗

mi +
M
∑

j=1

β̄iq
b
ji(I

∗

ji) −
M
∑

j=1

q
f∗
ij





×[λi − λ∗

i ] ≥ 0 ∀(Qw, Qf , I, γ, λ) ∈ RWN+NM+MN+N+N
+ , (6)

In the above equation, λi is the Lagrangian multiplier for the constraint (5) for manu-
facturer i. γi is the Lagrangian multiplier for manufacturer i’s budget constraint.

2.3 The Problem Faced by The Retailers

The retailers, in turn, must decide how much to order from the manufacturers in order
to cope with the random demand while still seeking to maximize their profits. A retailer
j is also faced with a handling cost, which may include, for example, the display and
storage cost associated with the product. This cost is denoted by Cr, which, in turn,
depends on Qf .

Let ρ3j denote the demand price of the product associated with retailer j. We assume

that d̂j(ρ3j) is the random demand for the product at the demand price ρ3j at retailer
outlet j. The probability density function of the random demand at the demand market
j is fd

j (x, ρ3j), with ρ3j serving as a parameter. Hence, we assume the density function

may vary with the demand price. Let Pj be the cumulative density function of d̂j(ρ3j),
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that is, Pj(x, ρ3j) = Pj(d̂j ≤ x) =
∫

fd
j (x, ρ3j)dx. Let sj =

∑N
i=1 q

f
ij. Note that the

expected values of excess supply and excess demand of retailer j are scalar functions

of sj. In particular, let e+
j and e−j denote, respectively, the expected values: E

[

4+
j

]

and E
[

4−

j

]

, that is,

e+
j (sj, ρ3j) ≡ E

[

4+
j

]

=

∫ sj

0
(sj − x)fd

j (x, ρ3j)dx, (7)

e−j (sj , ρ3j) ≡ E
[

4−

j

]

=

∫

∞

sj

(x − sj)f
d
j (x, ρ3j)dx. (8)

Given the above notation, we can express the criterion of profit maximization for
retailer j as:

Max E
[

ρ∗3j min{sj, d̂j}
]

− E
[

π+
j 4

+
j + π−

j 4
−

j

]

− Cr
j (Qf ) −

n
∑

j=1

ρ
f∗
2i q

f
ij (9)

Where π+
j refers to the unit inventory cost, π−

j refers to the unit shortage cost. Ob-
jective function (9) thus expresses that the difference between the expected revenue
minus the expected inventory and shortage cost, the handling cost, and the payout to
the manufacturers is to be maximized.

Applying now the definitions of 4+
j and 4−

j , we know that min{sj, d̂j(ρ3j)} = d̂j−4−

j .
Therefore, the objective function (9) can be expressed as

Max ρ∗3jdj(ρ
∗

3j) − (ρ∗3j + π−

j )e−j (sj , ρ
∗

3j) − π+
j e+

j (sj, ρ
∗

3j) − Cr
j (Qf ) −

n
∑

j=1

ρ
f∗
2i q

f
ij (10)

where dj(ρ3j) ≡ E[d̂j(ρ3j)] is a scalar function of ρ3j .

We now consider the optimality conditions of the retailers assuming that each retailer
is faced with the optimization problem (10). Here, we also assume that the retailers
compete in a noncooperative manner so that each maximizes his profit, given the
actions of the other retailers. Note that, at this point, we consider that retailers seek
to determine the amount that they wish to obtain from the manufacturers. First,
however, we make the following derivation and introduce the necessary notation:

∂e+
j (sj , ρ

∗

3j)

∂q
f
ij

= Pj(sj , ρ
∗

3j) (11)

∂e−j (sj , ρ
∗

3j)

∂q
f
ij

= Pj(sj , ρ
∗

3j) − 1. (12)

Assuming that the handling cost for each retailer is continuous and convex, then the
optimal conditions for all retailers satisfy the variational inequality: determine Qf∗ ∈
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RNM
+ , satisfying:

N
∑

i=1

M
∑

j=1



(ρ∗3j + π−

j )(Pj(s
∗

j , ρ
∗

3j) − 1) + π+
j Pj(s

∗

j , ρ
∗

3j) +
∂Cr

j (Qf∗)

∂q
f
ij

+ ρ
f∗
2i



×[qf
ij−q

f∗
ij ] ≥ 0,

∀Qf ∈ RNM
+ (13)

2.4 The Demand Market Equilibrium Conditions

The equilibrium conditions associated with the transactions that take place between
the retailers and the consumers are the stochastic economic equilibrium conditions,
which, mathematically, take on the following form: for any retailer j; j = 1, . . . ,M :

d̂j(ρ
∗

3j)

{

≤
∑N

i=1 q
f∗
ij , a.e., if ρ∗3j = 0,

=
∑N

i=1 q
f∗
ij , a.e., if ρ∗3j > 0

(14)

where a.e. means that the corresponding equality or inequality holds almost every-
where.

Condition (14) states that, if the demand price at the outlet j that consumers are willing
to pay is positive, then the quantities purchased by the retailer from the manufacturers
in the aggregate is equal to the demand, with exceptions of zero probability. These
conditions correspond to the well-known equilibrium conditions. Related equilibrium
conditions were proposed in [40].

Equilibrium condition (14) is equivalent to the following variational inequality problem,
after taking the expected value and summing over all retailers j: determine ρ∗3j ∈ RM

+

satisfying:
M
∑

j=1

(
N

∑

i=1

q
f∗
ij − dj(ρ

∗

3j)) × [ρ3j − ρ∗3j ] ≥ 0, ∀ρ3 ∈ RM
+ , (15)

where ρ3 is the M -dimensional vector with components: ρ31, . . . , ρ3M .

2.5 The Equilibrium Conditions for the Reverse Supply

Chain

In the reverse chain, the consumer markets behavior can be characterized by equation
(16) subject to the constraint (17).

αj(Q
b(I∗))

{

≥ ρb∗
4j, if I∗ji = 0,∀i

= ρb∗
4j, if I∗ji ≥ 0,∀i

(16)

subject to
N

∑

i=1

qb
ji(I

∗

ji) ≤ ζj(
N

∑

i=1

q
f∗
ij ) (17)

Where αj represents the disutility that consumers face at demand market j for return-
ing the used product. We assume it is an increasing function of the recycle volume
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Qb(I∗), which means that the more a consumer returns the recycled products, the more
inconvenience he/she will encounter. ρb

4j refers to the price of the recyclable products
that the manufacturers pay to collect from demand market j. Thus equation (16)
states that if a manufacturer opt out in investing in the establishment and mainte-
nance of the reverse distribution channel, the consumer’s compensation for returning
the recycled product is smaller than his/her disutility. On the other hand, if a man-
ufacturer invests in the reverse distribution channel, the consumers’ disutility will be
compensated. Constraint (17) states that the amount of the recycled products at the
demand market j must not exceed the amount purchased from the retailers multiply
the return ratio ζj.

The above equilibrium conditions correspond to the following variational inequality:
determine (I∗, Qf∗, ξ∗) ∈ RMN+NM+M

+ satisfying

N
∑

i=1

M
∑

j=1

[

αj(Q
b)

dqb
ji(I

∗

ji)

dIji
− ρb∗

4j

dqb
ji(I

∗

ji)

dIji
+ ξ∗j

dqb
ji(I

∗

ji)

dIji

]

×(Iji−I∗ji)−
N

∑

i=1

M
∑

j=1

(ζjξ
∗

j )×(qf
ij−q

f∗
ij )

+
M
∑

j=1

(ζj(
N

∑

i=1

q
f∗
ij ) −

N
∑

i=1

qb
ji(I

∗

ji)) × (ξj − ξ∗j ) ≥ 0, ∀Iji ∈ RMN
+ , ∀q

f
ij ∈ RMN

+ , ∀ξj ∈ RM
+ .

(18)

By combining the consumers market behavior in both the forward and reverse chains,
the equilibrium conditions of the consumer markets can be formulated as the following
variational inequality: determine (Qf∗, I∗, ρ∗3, ξ

∗) ∈ RWN+NM+M+M
+ satisfying:

N
∑

i=1

M
∑

j=1

(−ζjξ
∗

j ) × [qf
ij − q

f∗
ij ]

+
M
∑

j=1

(
N

∑

i=1

q
f∗
ij −dj(ρ

∗

3j))×[ρ3j−ρ∗3j ]+
N

∑

i=1

M
∑

j=1

[

αj(Q
b)

dqb
ji(I

∗

ji)

dIji
− ρb∗

4j

dqb
ji(I

∗

ji)

dIji
+ ξ∗j

dqb
ji(I

∗

ji)

dIji

]

×(Iji−I∗ji)+
M
∑

j=1

(ζj(
N

∑

i=1

q
f∗
ij )−

N
∑

i=1

qb
ji(I

∗

ji))×(ξj−ξ∗j ) ≥ 0, ∀(Qf , I, ρ3, ξ) ∈ RWN+NM+M+M
+

(19)

2.6 The Equilibrium Conditions of the Closed-loop Sup-

ply Chain Network

In equilibrium, we must have that the sum of the optimality conditions for all raw
material suppliers, as expressed by inequality (2), the optimality conditions of the
manufactures, as expressed by condition (6), the optimality conditions for all retailers,
as expressed by inequality (13), and the market equilibrium conditions for both forward
chain and reverse chain, as expressed by inequality (19) must be satisfied. Hence,
the shipments that the suppliers ship to the manufactures, after being converted into
the product, must be equal to the shipments that the manufacturers accept from the
suppliers. In addition, the shipments of the recycled products from the consumers to
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the manufacturers, must be equal to those accepted by the manufacturers. We state
this explicitly in the following definition:

Definition 1: The Closed-loop Supply Chain Network Equilibrium The equi-
librium state of the CLSC with uncertain yield and demand is one where the product
flow between the tiers of decision makers coincide the product shipment and prices
satisfy the sum of the optimality conditions (2), (6), (13), and conditions (19).

The summation of the inequalities (2), (6), (13), and (19), after algebraic simplification,
results in the following:

Theorem 1: The Variational Inequality Formulation

The equilibrium conditions governing the CLSC network model with uncertain yield and
random demands are equivalent to the solution of the variational inequality problem
given by: determine (Qw∗, Qf∗, I∗, γ∗, λ∗, ρ∗3, ξ

∗)
∈ RWN+NM+MN+N+N+M+M

+

W
∑

m=1

N
∑

i=1

(
∂fw

m(Qw∗)

∂qw
mi

+
∂cw

mi(Q
w∗)

∂qw
mi

− λ∗

i βmi) × (qw
mi − qw∗

mi)

+
N

∑

i=1

M
∑

j=1

[(ρ∗3j +λ−

j )(Pj(s
∗

j , ρ
∗

3j)−1)+λ+
j Pj(s

∗

j , ρ
∗

3j)+
∂Cr

j (Qf∗)

∂q
f
ij

+
∂fi(Q

f∗)

∂q
f
ij

+
∂c

f
ij(Q

f∗)

∂q
f
ij

+λ∗

i − ζjξ
∗

j ] × [qf
ij − q

f∗
ij ]

+
N

∑

i=1

M
∑

j=1

[
∂cb

ji(Q
b)

∂qb
ji

dqb
ji(I

∗

ji)

dIji
+ θb

i (1 − β̄i)
dqb

ji(I
∗

ji)

dIji
− λ∗

i β̄i

dqb
ji(I

∗

ji)

dIji
+ 1 + γ∗

i

+αj(Q
b)

dqb
ji(I

∗

ji)

dIji
+ ξ∗j

dqb
ji(I

∗

ji)

dIji
] × (Iji − I∗ji)

+
N

∑

i=1



Bi −
M
∑

j=1

I∗ji



 × [γi − γ∗

i ]

+
N

∑

i=1





W
∑

m=1

βmiq
w∗

mi +
M
∑

j=1

β̄iq
b
ji(I

∗

ji) −
M
∑

j=1

q
f∗
ij



 × [λi − λ∗

i ]

+
M
∑

j=1

(
N

∑

i=1

q
f∗
ij − dj(ρ

∗

3j)) × [ρ3j − ρ∗3j]

+
M
∑

j=1

(ζj(
N

∑

i=1

q
f∗
ij ) −

N
∑

i=1

qb
ji(I

∗

ji)) × (ξj − ξ∗j ) ≥ 0

∀(Qw, Qf , I, γ, λ, ρ3, ξ) ∈ RWN+NM+MN+N+N+M+M
+ , (20)

Proof: The formulation is developed using the standard variational inequality theory
(cf. Nagurney [41]).
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For easy reference in the subsequent sections, variational inequality problem (20) can
be rewritten in standard variational inequality form (cf. [41]) as follows:

F (X)T · (X − X∗) ≥ 0, ∀X ∈ K. (21)

where K ≡ {(Qw, Qf , I, γ, λ, ρ3, ξ)|q
w
mi ≥ 0, q

f
ij ≥ 0, Ii ≥ 0, γi ≥ 0, λi ≥ 0, ρ3j ≥

0, and ξj ≥ 0, ∀m, i, j}. Note that ρ3 is the M -dimensional vector with components:
ρ31, . . . , ρ3M .

X ≡ {(Qw, Qf , I, γ, λ, ρ3, ξ)}

and F (X) ≡ {F 1
mi, F

2
ij , F

3
ji, F

4
i , F 5

i , F 6
j , F 7

j }m=1,...,W, i=1,...,N j=1,...,M where the terms of
F correspond to the terms preceding the multiplication signs in inequality (20).

Note that the variables in the model (and which can be determined from the solution of
either variational inequality (20) or (21)) are: the equilibrium raw material shipments
given by Qw, the equilibrium product sales from the manufacturers to the retailers
denoted by Qf , the investment level I, as well as the equilibrium demand prices ρ3.
We now discuss how to recover the prices ρ1 that suppliers charge manufacturers, ρ2

associated with the middle tier of the supply chain and ρ4 associated with the reversed
supply chain.

First note that from (2), we have that if qw∗

mi > 0, then the price ρw∗

1m = ∂fw
m(Qw∗)
∂qw

mi
+

∂cw
mi
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. Also, from (6) it follows that if q
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i . Furthermore, from (18), if the optimum investment quantity I∗ji > 0,

then the buy-back price ρb∗
4j = αj(Q

b) + ξ∗j .

3. Qualitative Properties

In this section, we provide some qualitative properties of the solution to variational
inequality (20). In particular, we establish the existence of a unique solution satisfying
variational inequality (20).

Since the feasible set is not compact, we cannot derive existence simply from the
assumption of the continuity of the functions. Nevertheless, we can impose a rather
weak condition to guarantee the existence of a solution.

Let Kb ≡ {(Qf , Qw, I, γ, λ, ρ3, ξ)|0 ≤ (Qf , Qw, I, γ, λ, ρ3, ξ) ≤ b} where
b = (b1, b2, B, b3, b4, b5, b6) ≥ 0 and Qf ≤ b1, Qw ≤ b2, I ≤ B, γ ≤ b3, λ ≤ b4, ρ3 ≤

b5, and ξ ≤ b6. Indeed Kb is a bounded closed convex subset of
RWN+NM+MN+N+N+M+M

+ . Thus, the variational inequality (20) admits at least
one solution Xb ∈ Kb, from the standard theory of variational inequalities, since Kb is
compact and the functions are continuous. Following Kinderlehrer and Stampacchia
[42] (see also Theorem 1.5 in Nagurney [41]), we then have:

Theorem 2
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Variational inequality (20) admits a solution if and only if there exists b > 0, such
that variational inequality (20) admits a solution in Kb with Qf < b1, Qw < b2, Qb <

b3, γ < b4, λ < b5, ρ3 < b6, ξ < b7, and I ≤ B.

Theorem 3: Existence

Suppose that there exist positive constants R,S, T,with T > 0, such that:
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≥ R, ∀I with Iji ≥ S, ∀i, j (24)

dj(ρ
∗

3) ≤ S, ∀ρ3 with ρ3j > T, ∀j (25)

Then, variational inequality (20) admits at least one solution.

Assumptions (22)-(25) are reasonable from an economics perspective. In particular,
according to (22), when the raw material shipment from a supplier to a manufacturer is
large, we can expect that the corresponding sum of the marginal costs associated with
the procurement, the production, the shipment and the holding of the raw material
will exceed a positive lower bound. Similar rationale exists for assumption (23). If the
amount of transaction between a manufacture and retailer is large, the sum of expected
inventory cost, opportunity cost, marginal holding cost and related production and
transaction cost will exceed a lower bound. On the other hand, (24) shows a fact from
consumer’s view point. If the manufacturer shows enough environmental consciousness
and invest in recycling, the consumer would be able to sell recyclable products at a
fairly good price and therefore, the sum of cost associated with recycling will exceed a
lower bound too. Moreover, according to assumption (25), if the price of the product
at the retailer is high, we can expect that the demand for the product will be bounded
from above at that market.

Theorem 4: Monotonicity

Suppose that the production cost functions fi; i = 1, . . . , N are additive and can
be written as f1

i (q1
i ) + f2

i (q̄i
1), where f1

i (q1
i ) is the internal production cost that de-

pends solely on the firm i’s own output level q1
i , and f2

i (q̄i
1) is the interdependent

part of the production cost that is a function of all the other firms’ output levels
q̄i

1 = (q1, ..., qi−1, qi+1, ..., qm), and furthermore, assume that f1
i ; i = 1, . . . , N , are
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convex functions. Similarly, the procurement cost functions fw
m; m = 1, . . . ,W are

additive as well. If the cw
mi, c

f
ij , Cr

j and cb
ji functions are convex; the αj functions

are monotone increasing; and dj functions are monotone decreasing functions for all
m, i, j. We further assume that qb

ji(Iji) is a linear function of Iji with non-negative
slope. Then the vector function F defined in (20) is monotone, that is,

(F (X ′) − F (X ′′))T · (X ′ − X ′′) ≥ 0, ∀X ′,X ′′ ∈ K. (26)

Proof: The expression (F (X ′)−F (X ′′))T · (X ′−X ′′) is equal to the expression (after
some algebraic simplification):
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Based on the above assumptions, one can have (I) ≥ 0,(III) ≥ 0, (IV ) ≥ 0, (V ) ≥ 0.
The proof of (II) ≥ 0 could be derived from lemma 1 in Dong, Zhang, and Nagurney
[34]. Therefore (26) must be greater than or equal to zero, under the above assumptions,
and, hence, F (X) is monotone. 2

Theorem 5: Lipschitz Continuity

The function F is Lipschitz continuous, that is,

‖F (X ′) − F (X ′′)‖ ≤ L‖X ′ − X ′′‖, ∀X ′,X ′′ ∈ K, where L > 0, (28)

under the following conditions:
(i). fi and fw

m are additive and have bounded second-order derivatives, for all m, i;

(ii). cw
mi, c

f
ij , cb

ji, and Cr
j have bounded second-order derivatives, for all m, i, j;

(iii). αj, dj and qb
ji(Iji) have bounded first-order derivatives for all i, js.

Theorem 6: Existence and Uniqueness of a Solution to the Variational

Inequality Problem

Assume the conditions of Theorem 5. Then, the function that enters the variational
inequality (20) has a unique solution in K.

Proof: Follows from Theorem 2.5 in Nagurney and Zhang [43]. 2

4. Numerical Examples

In this section, the modified projection method of Korpelevich [44] is utilized to solve
variational inequality (21). The algorithm is guaranteed to converge if the function
F that enters the variational inequality is monotone and Lipschitz Continuous (and
that a solution exists). The algorithm was implemented in MATLAB on a Dell E6410
series computer. The convergence criterion, that is, the absolute value of the product
shipments and prices between two successive iterations, differed by no more than 10−5.
The parameter in the modified projection method (see (29) and (30)) was set to .001
and we assumed, for the sake of illustration, that the demands associated with the retail
outlets followed a uniform distribution. Hence, we assumed that the random demand,
d̂k(ρ2j), faced by retailer j, is uniformly distributed in [0,

bj

ρ2j
], bj > 0; j = 1, . . . ,M .

Therefore,
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Pj(x, ρ2j) =
xρ2j

bj
, (29)

Fk(x, ρ3k) =
ρ2j

bj
(30)

dk(ρ3k) = E(d̂k) =
1

2

bj

ρ2j
; j = 1, . . . ,M (31)

We assume that there are two raw material suppliers, two manufacturers, and two
retailers. The conversion rate, βmi, from raw material to final product is equal to 0.8
for m = 1, 2 and i = 1, 2. The investment budget for both manufactures is equal to 10.
The return ratio from the demand market to the manufacturer is set to 0.4 for both
demand markets. The unit landfill cost, θb

i , is equal to 0.5 for both manufacturers. The
overage penalty cost π+

j and the shortage cost π−

j are equal to 0 and 100, respectively,
for both retailers. The functions for these examples are constructed as following:

fw
1 (Qw) = 4(

2
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2
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ji(Iji) = 5Iji for i = 1, 2; j = 1, 2;
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q
f
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αj(Q
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2
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qji) for j = 1, 2.

In Figure 2 below, we show the relationship between the expected yield rate β̄i and the
total investment level. We see that there is positive correlation between the investment
level and the expected yield rate, that is, as one increases so does the other. Manu-
facturers will be more willing to invest in the recycled product distribution channel if
they see a higher return on investment. If firms increase their level of investment, the
demand market will increase their return volume, thus benefiting the profits from the
reverse supply chain network. Moreover, we also note that the budget for investment
is not binding due to the reason that both the yield rate and the demand level prevent
the manufacturers from fully investing in the reverse supply chain.
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Figure 2: Relationship Between the Total Investment and the Expected Yield Rate
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Figure 3: Relationship Between the Demand Market Price and the Expected Yield Rate

In Figure 3, we illustrate the relationship between the expected yield rate with the
demand market price. Interestingly, we note that the consumers face a lower market
price (and therefore, resulting in higher demand) when the expect yield rate is higher.
This is due to the reason that the production of the recycled product is cheaper and a
higher expected yield rate enables manufacturers to produce more to satisfy consumers’
higher demand.

In Figure 4, we show the relationship between the expected yield rate with the total
product flows in the reverse supply chain and that in the forward supply chain. It
can be seen that both types of flow increase with the increase of the expected yield
rate. However, the product flow volume in the forward chain has a sharper increase
than that in the reverse distribution channel. Our interpretation is that the increase in
demand due to the yield rate increase (from the investment) will generate more sales
volume for manufacturers than for the returned product volume. Therefore, firms have
an incentive to invest in their reverse supply which will generate additional sales and
benefit to the consumer as well as the firms profit margin.
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Figure 4: Relationship Between the Product Flows and the Expected Yield Rate

5. Conclusion

In this paper, a CLSC network model was investigated which consisted of raw material
suppliers, manufacturers, and retail outlets. The demand of the retailer was satis-
fied either by newly manufactured products or by remanufactured products which are
comparable to the new ones in function and quality, hence the consumer was indif-
ferent in their demand for either products. We assumed the manufacturers collected
the recycled product directly from the demand market, similar to the operations of
Hewlett-Packard and Xerox Corporation regarding printer cartridges.

We derived the optimality conditions of the various decision-makers, and established
that the governing equilibrium conditions could be formulated as a finite-dimensional
variational inequality problem. We studied the qualitative properties of the equilibrium
pattern, and under reasonable conditions, established existence and uniqueness results.
We also discussed the characteristics of the functions in the variational inequality that
enabled us to establish convergence of the proposed algorithm that could allow for the
discussion of the effects of competition, distribution channel investment, combined with
uncertainties in yield and demand on equilibrium quantity transactions and prices. We
illustrated the model by presenting numerical examples.

The volume of waste is growing at an alarming rate and environmental recovery is
an option that is underutilized since firms are unsure how to mitigate the ambiguity
surrounding economic performance. By providing clarification of reverse supply chain
issues, and firms re-examine their recovery efforts, the environmental benefits can be
pronounced, for example, reducing landfill space, reducing air pollution, and leveraging
the earth’s natural resources, to name a few. Equipped with our model, one can “fine-
tune” the parameters to study the behaviors of different decision makers in the CLSC,
which also can generate some implications for the policy maker. Furthermore, although
the cost functions in the example are hypothetical, we believe that some interesting
managerial implications are reported. Of course, in the future, if the empirical data is
available, we can validate our model further.
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In our illustrative numerical examples, we note that the consumers face a lower market
price (therefore resulting in higher demand) when the expect yield rate is higher since
the production of the recycled product is cheaper. If firms increase their level of
investment, the demand market will increase their return volume, thus benefiting the
profits from the reverse supply chain network. Additionally, we noted that both total
product flows in the reverse supply chain and from manufacturers in the forward supply
chain decrease as the yield rate decreases. However, manufacturers face a sharper
decrease than the reverse channel which signifies that firms have an incentive to invest
in their reverse supply which will generate additional sales and benefit to the consumer
as well as the firms profit margin.

This topic is of interest and could lead to possible future modifications of the model.
Through the development of this model, additional facets of CLSC network models
could be considered such as the development of a multiperiod CLSC network model
that considers inventory management of remanufacturable products [45], and consider
strategic safety stocks in reverse logistics supply chains [46]. Finally, we could take a
more comprehensive approach to study CLSC networks with different market structures
and provide a comparison of various performance measures.
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