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Abstract: In this paper, we develop a supply chain network game theory model consist-

ing of retailers and demand markets with retailers competing noncooperatively in order to

maximize their expected profits by determining their optimal product transactions as well

as cybersecurity investments subject to nonlinear budget constraints that include the cy-

bersecurity investment cost functions. The consumers at the demand markets reflect their

preferences through the demand price functions, which depend on the product demands and

on the average level of cybersecurity in the supply chain network. We identify the supply

chain network vulnerability to cyberattacks as well as that of the individual retailers. We

demonstrate that the governing Nash equilibrium conditions can be formulated as a vari-

ational inequality problem and we provide a novel alternative formulation, along with the

accompanying theory. We also propose an algorithm for the alternative formulation, which

yields, at each iteration, closed form expressions in product transactions, security levels, and

Lagrange multipliers associated with the budget constraints. We then apply the algorithm

to compute solutions to a spectrum of numerical supply chain network cybersecurity invest-

ment examples. The examples broaden our understanding of the impacts of the addition of

retailers, changes in budgets, demand price functions, and financial damages, on equilibrium

product transactions and cybersecurity investments, as well as on the supply chain network

vulnerability and retailer vulnerability under budget constraints.

Key words: cybersecurity, investments, game theory, Nash equilibrium, information asym-

metry, variational inequalities, supply chain network vulnerability
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1. Introduction

The challenges imposed by the growing number of cyberattacks, along with the associ-

ated financial losses and reputational costs, are testing businesses and other organizations,

governments, and even individuals. Recent and highly visible cyberattacks have included the

cyberbreach at the financial services giant JPMorgan in late summer 2014, which affected

76 million customers (Caruthers (2014), Glazer (2015)), the security breach at the retail

giant Target in late 2013 with an estimated 40 million payment cards stolen and upwards

of 70 million other personal records compromised (Kirk (2014)), and the data breach at

SONY Pictures in late Fall 2014, which has been called catastrophic and a public relations

nightmare (Lewis (2014)). According to PricewaterhouseCoopers (2014a), the number of

cybersecurity incidents that were detected by respondents to their survey increased by 48%

to 42.8 million in 2014. At the same time, the number that reported losses of $20 million

or greater was almost double the number reported in 2013. No industrial sector is immune

to cyberattacks with sectors such as financial services, healthcare, high technology, energy,

and governments being especially attractive targets (see Nagurney (2015)). Also, as noted

therein, the Center for Strategic and International Studies (2014) reports that the estimated

annual cost to the global economy from cybercrime is more than $400 billion with a conser-

vative estimate being $375 billion in losses, a number that exceeds the national income of

most countries.

In today’s networked economy, many businesses are dependent on their globalized supply

chains with their IT infrastructure increasingly spread out and, at the same time, vulnerable

to cyberattacks. For example, the Target breach of 2013 occurred when the cyberattacker

took advantage of the vulnerability in the remote diagnostics of the HVAC system supplier

connected to Target’s IT system and entered a vulnerable supply chain link (Nagurney,

Nagurney, and Shukla (2015)). Hence, there is a growing interest in developing rigorous

frameworks for cybersecurity investments. According to PricewaterhouseCoopers (2014a),

mid-sized and large companies reported a 5% increase in cybersecurity budgets, whereas

small companies reduced security costs by more than 20%. As reported in Glazer (2015),

JPMorgan is expected to double its cybersecurity spending in 2015 to $500 million from $250

million in 2015. According to Purnell (2015), the research firm Gartner reported in January

2015 that the global information security spending would increase by 7.6% this year to $790

billion and by 36% by 2018 to $101 billion. It is clear that making the best cybersecurity

investments, given budget constraints, is a very timely problem and issue.

Whether in retail, financial services, government settings, energy, healthcare, or others,

it is essential to recognize that the cybersecurity investments of one member of a supply
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chain in terms of cybersecurity may impact the probability of a successful cyberattack on

another. The IT infrastructure may be shared; suppliers may be common; the members may

have similar vulnerabilties, and so on. Hence, to truly capture the impacts of cybersecurity

investments, one needs to model not only the individual cybersecurity investment problem

but that of multiple decision-makers simultaneously. Therefore, a game theory framework is

needed.

In this paper, we develop a supply chain network game theory model of cybersecurity

investments consisting of a tier of retailers and a tier of demand markets. The retailers

can be consumer goods retailers, high tech retailers, or even financial service ones. What

is needed is that they are in the same industry and that their individual decisions may

impact the decisions of the others in terms of the volume of product handled and the level

of cybersecurity investment. Our work builds on that of Shetty (2010), Shetty et al. (2009),

and Nagurney, Nagurney, and Shukla (2015) but with a crucial difference – the retailers

are now subject to individual budget constraints for their cybersecurity investments. These

constraints are nonlinear, posing challenges for both theory and computations. In addition,

unlike in Nagurney, Nagurney, and Shukla (2015), in our new game theory model we allow

each retailer to have a distinct upper bound on its security level, which is less than one,

with a value of one corresponding to perfect security, which may not be achievable. In our

earlier work, all retailers had an upper bound of one on their security levels. In addition,

in the new model in this paper, we also impose upper bounds on the product transactions

between retailers and the consumers at the demand markets. For a survey of game theory,

as applied to network security and privacy, see Manshaei et al. (2013). Rue, Pfleeger, and

Ortiz (2007), on the other hand, provide an overview of models for cybersecurity investments,

ranging from input/output models to return on investment frameworks as well as heuristic

approaches. The edited volume by Daras and Rassias (2015) contains a collection of papers

on cryptography and network security.

Our contributions to the literature lie in advancing the state-of-the-art of game theory

for cybersecurity investments as well as applications of variational inequalities, with the

accompanying theory, for problems with nonlinear constraints. To-date, with the exception

of the work of Toyasaki, Daniele, and Wakolbinger (2014), in the realm of network equilibrium

models for end-of-life products, there has been limited work on such problems.

We now highlight the importance of having models for cybersecurity investments that

include budget constraints. Specifically, we further emphasize the economic and cyberat-

tack landscape today. Cybersecurity has become an innate part of every organization’s IT

infrastructure. Most operational and policy related decisions include cybersecurity implica-
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tions. From a system standpoint, organizations have to deploy a lot more than firewalls.

Defense against risks originating from both within and outside the organization needs sig-

nificant investments to keep up with the threats. Unfortunately, budget constraints can

delay implementation of security measures and in the event of a successful cyberattack cause

heavy losses. Even though companies are investing more than they used to in cybersecurity,

mounting risks caused 65% respondents in a survey to state that budget constraints are their

number one obstacles to delivering value (EY (2013)). Moreover, most of the budget gets

spent on resolving past issues rather than investing in future protection. According to a

report on cybercrime in the U.S. by PricewaterhouseCoopers (2014b), Retailers spend $400

per employee while banks and other financial service institutions spend as much as $2500

on cybersecurity. An increase in budget could lower the risk; however, it would not make

companies immune to cyberattacks. To strategically use a constrained budget is the best

option.

For instance, Sony Pictures plans to spend $15 million to secure itself from future cyber-

attacks. The company had been attacked in 2014 that costed it $100 million (IT Security

(2015)). With a tight budget set aside, protecting employees and infrastructure, and mon-

itoring interactions with other competitors and partners would be a challenge. Despite a

budget of $250 million, JP Morgan Chase was attacked in 2014 since they neglected investing

into two-step authentication. Target after its attack in 2014 that cost $148 million assigned

a budget of $100 million that was used specifically to adopt a technology to embed chips

into debit and credit cards for added security (CBS News (2014)). Having committed a

chunk of funds for technology, investment in other cybersecurity measures would certainly

be constrained. Earlier cybersecurity investments were considered pure costs that do not

add to the brand or the products. However, with the sheer volume of attacks and vulnera-

bilities within the organization to patch, IT needs have grown. If large companies are facing

a budget constraint, small companies are facing a decline in cybersecurity spending, making

them a perfect target for infiltration (Statista (2015)).

This paper is organized as follows. In Section 2, we develop the supply chain network

game theory model with competing retailers, who seek to individually maximize their ex-

pected utilities, which capture the expected revenue and financial losses, in the case of a

cyberattack, along with the costs associated with cybersecurity investments. We also dis-

cuss how to measure the vulnerability of a firm to cyberattacks and that of the supply chain

network, as a whole. We state the Nash equilibrium conditions, present the theoretical foun-

dations, and provide variational inequality formulations. In the first variational inequality

formulation, the nonlinear budget constraints appear in the feasible set and, in the alter-
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native one, through the use of Lagrange multipliers, the nonlinear constraints are captured

in the function that enters the variational inequality with the feasible set consisting of the

nonnegative orthant and the bounds on the security levels. In Section 3, we present the

algorithm, with nice features for computations, that yields, at each iteration, closed form

expressions for the product transactions, the security levels, and the Lagrange multipliers

associated with the budget constraints of the retailers. In Section 4, we present the numerical

examples and, in Section 5, we summarize and conclude.

2. The Supply Chain Network Game Theory Model of Cybersecurity Invest-

ments with Nonlinear Budget Constraints

The supply chain network game theory model of cybersecurity investments with nonlin-

ear budget constraints consists of m retailers, with a typical retailer denoted by i, and n

demand markets, with a typical demand market denoted by j. Retailers may be brick and

mortar stores or online retailers. In our framework, we consider retailer in a broad sense in

that a retailer may correspond to a financial service firm such as a retail bank, a consumer

goods store, etc. We do assume that the retailers transact the same product. Since we are

concerned with cybersecurity investments, the transactions between the two tiers take place

electronically in terms of payments and, hence, there may be a possibility of cyberattacks

with the concomitant financial damage, loss of reputation, opportunity costs, and associated

disruptions. Specifically, consumers at the demand markets make their purchases by credit

or debit cards or via an online payment system. They reflect their preferences as to the

cybersecurity of the supply chain network through the demand price functions. The infor-

mation that they have available is the average supply chain network cybersecurity, which we

refer to as the supply chain network security or, simply, the network security. We can expect

consumers at the demand markets to have information as to the security in an industry

rather than the individual retailer cybersecurity levels. Since here we are concerned with

supply chain aspects, the retailers share some connectivity and may be exposed to cyberat-

tacks through their suppliers, and/or possibly, common payment systems, or even computer

infrastructure.

The bipartite network structure of the problem is depicted in Figure 1 and the notation

for the model is presented in Table 1.

We first present the constraints and then we construct the objective function of each

retailer. We also discuss how we quantify the cybersecurity of the supply chain network

along with its vulnerability, and that of the individual retailers. One of the challenging

aspects of the model is that the budget constraints are nonlinear and, hence, convexity of
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Figure 1: The Bipartite Structure of the Supply Chain Network Game Theory Model

Table 1: Notation for the Model
Notation Definition

Qij the amount of the product transacted between retailer i and demand
market j; i = 1, . . . ,m; j = 1, . . . , n. We group the transactions {Qij}
for retailer i into the vector Qi ∈ Rn

+ and all the transactions of all
retailers into the vector Q ∈ Rmn

+ .
dj the demand for the product at demand market j; j = 1, . . . , n. We

group the demands into the vector d ∈ Rn
+.

si the cybersecurity level of retailer i; i = 1, . . . ,m. We group the security
levels of all retailers into the vector s ∈ Rm

+ .
s̄ the cybersecurity level in the supply chain network, where s̄ =

1
m

∑m
k=1 sk.

pi the probability of a successful cyberattack on retailer i
ci the cost associated with handling and processing the product at retailer

i; i = 1, . . . ,m.
cij(Qij) the transaction cost associated with transacting between i and j; i =

1, . . . ,m; j = 1, . . . , n.
ρj(d, s̄) the demand price of the product at demand market j; j = 1, . . . , n.

Bi the budget of retailer i for cyberinvestments, which cannot be exceeded;
i = 1, . . . ,m.

Di the financial damage accrued by retailer i after a successful cyberattack
on i; i = 1, . . . ,m.

Q̄ij the upper bound on the product transaction between i and j; i =
1, . . . ,m; j = 1, . . . , n.

usi
the upper bound on the security level of retailer i; i = 1, . . . ,m.

the feasible sets of the retailers must be established.

The demand for the product at demand market j must satisfy the following conservation
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of flow equation:

dj =
m∑

i=1

Qij, j = 1, . . . , n, (1)

where

0 ≤ Qij ≤ Q̄ij, i = 1, . . . ,m; j = 1, . . . , n, (2)

that is, the demand at each demand market is satisfied by the sum of the product trans-

actions between all the retailers with the demand market, and these transactions must be

nonnegative and not exceed the imposed upper bounds.

The cybersecurity level or, simply, security, of each retailer i must satisfy the following

constraint:

0 ≤ si ≤ usi
, i = 1, . . . ,m, (3)

where usi
< 1 for all i; i = 1, . . . ,m. The larger the value of si, the higher the security level,

with perfect security reflected in a value of 1, but, since we do not expect perfect security

to be attainable, we have usi
< 1; i = 1, . . . ,m. If si = 0 this means that retailer i has no

security.

Associated with acquiring a security level si is an investment cost function hi; i =

1, . . . ,m, with the function assumed to be continuously differentiable and convex. We assume

that, for a given retailer i, hi(0) = 0 denotes an entirely insecure retailer and hi(1) = ∞
is the investment cost associated with complete security for the retailer. An example of an

hi(si) function satisfies these properties and that we utilize in our model as

hi(si) = αi(
1√

(1− si)
− 1) with αi > 0. (4)

The term αi enables distinct retailers to have different investment cost functions based on

their size and needs. Such functions have been introduced by Shetty (2010) and Shetty et

al. (2009) and also used by Nagurney, Nagurney, and Shukla (2015). However, in those

models, there are no cybersecurity budget constraints and the cybersecurity investment cost

functions only appear in the objective functions of the decision-makers.

In our model, each retailer is faced with a limited budget for cybersecurity investment.

Hence, the following nonlinear budget constraints must be satisfied:

αi(
1√

(1− si)
− 1) ≤ Bi; i = 1, . . . ,m, (5)

that is, each retailer can’t exceed his allocated cybersecurity budget. Clearly, the constraints

in (5) are nonlinear and pose challenges for the analysis and solution of our model, which

we demonstrate can be overcome.
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As in Shetty et al. (2009) and Shetty (2010), we define the probability pi of a successful

cyberattack on retailer i as

pi = (1− si)(1− s̄), i = 1, . . . ,m, (6)

where the term (1−s̄) represents the probability of a cyberattack on the supply chain network

and the term (1 − si) represents the probability of success of such an attack on retailer i.

The supply chain network vulnerability level v̄ = 1− s̄ with retailer i’s vulnerability level vi

being 1− si; i = 1, . . . ,m. Such measures are also used in Nagurney, Nagurney, and Shukla

(2015).

In view of (1) we can define demand price functions ρ̂j(Q, s) ≡ ρj(d, s̄), ∀j. The consumers

reflect their preferences for the product through the demand price functions, which depend

not only on the vector of demands but also on the supply chain network security. We expect

the consumers to be willing to pay more for enhanced network security but the degree may

differ from consumer to consumer. Also, there is information asymmetry (cf. Akerlof (1970))

in the model, since retailers are aware of their investments in cybersecurity, but consumers

know only the average security as defined by s̄.

The profit fi of retailer i; i = 1, . . . ,m (in the absence of a cyberattack and security

investment) is the difference between the revenue and his costs, that is,

fi(Q, s) =
n∑

j=1

ρ̂j(Q, s)Qij − ci

n∑
j=1

Qij −
n∑

j=1

cij(Qij). (7)

If there is a successful cyberattack on a retailer i; i = 1, . . . ,m, he incurs an expected

financial damage given by

Dipi, (8)

where Di takes on a positive value.

Using expressions (6), (7), and (8), the expected utility, E(Ui), of retailer i; i = 1, . . . ,m,

which corresponds to his expected profit, is:

E(Ui) = (1− pi)fi(Q, s) + pi(fi(Q, s)−Di)− hi(si))

= fi(Q, s)− piDi − hi(si). (9)

According to (9), each retailer encumbers the cost associated with his cybersecurity invest-

ment. We group the expected utilities of all the retailers into the m-dimensional vector E(U)

with components: {E(U1), . . . , E(Um)}.
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Let Ki denote the feasible set corresponding to retailer i, where Ki ≡ {(Qi, si)|0 ≤ Qij ≤
Q̄ij,∀j, , and 0 ≤ si ≤ usi

and (5) holds for i} and define K ≡
∏m

i=1 Ki.

The m retailers compete noncooperatively in supplying the product and invest in cy-

bersecurity, each one trying to maximize his own expected profit. We seek to determine a

nonnegative product transaction and security level pattern (Q∗, s∗) ∈ K for which the m

retailers will be in a state of equilibrium as defined below. Nash (1950, 1951) generalized

Cournot’s concept (see Cournot (1838)) of an equilibrium for a model of several players, that

is, decision-makers, each of which acts in his/her own self-interest, in what has been come

to be called a noncooperative game.

Definition 1: A Supply Chain Nash Equilibrium in Product Transactions and

Security Levels

A product transaction and security level pattern (Q∗, s∗) ∈ K is said to constitute a supply

chain Nash equilibrium if for each retailer i; i = 1, . . . ,m,

E(Ui(Q
∗
i , s

∗
i , Q̂

∗
i , ŝ

∗
i )) ≥ E(Ui(Qi, si, Q̂∗

i , ŝ
∗
i )), ∀(Qi, si) ∈ Ki, (10)

where

Q̂∗
i ≡ (Q∗

1, . . . , Q
∗
i−1, Q

∗
i+1, . . . , Q

∗
m); and ŝ∗i ≡ (s∗1, . . . , s

∗
i−1, s

∗
i+1, . . . , s

∗
m). (11)

According to (10), a supply chain network equilibrium is established if no retailer can

unilaterally improve upon his expected profits by selecting an alternative vector of product

transactions and security levels.

We now present alternative variational inequality formulations of the above supply chain

Nash equilibrium in product transactions and security levels.

We first establish that the feasible set K is convex in the following lemma. In our model,

unlike in many network equilibrium problems from congested urban transportation networks

to supply chains and financial networks (cf. Nagurney (1999, 2006), Daniele (2006)), the

feasible set contains nonlinear constraints.

Lemma 1

Let hi be a convex function for all retailers i; i = 1, . . . ,m. The feasible set K is then

convex.
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Proof: We study the convexity of the constraint set

K̄ = {si ∈ R : hi(si) ≤ Bi} . (12)

Let s1
i , s2

i ∈ K̄ and λ ∈ [0, 1], namely:

hi(s
1
i ) ≤ Bi and hi(s

2
i ) ≤ Bi. (13)

Since hi(si) is a convex function, we have:

hi

(
λs1

i + (1− λ)s2
i

)
≤ λ hi(s

1
i )︸ ︷︷ ︸

≤Bi

+(1− λ) h(s2
i )︸ ︷︷ ︸

≤Bi

≤ Bi, (14)

namely,

hi

(
λs1

i + (1− λ)s2
i

)
≤ Bi, (15)

that is,

λs1
i + (1− λ)s2

i ∈ K̄. (16)

Hence, the set defined by (12) is convex.

Also, we know that each Ki consists of the above budget constraint, the box-type con-

straint (3) on si, and the nonnegativity constraints on retailer i’s transactions as in (2). The

intersection of these sets is also convex. Finally, since K is the Cartesian product of convex

sets, Ki; i = 1, . . . ,m, it is also convex, so the conclusion follows. �

We note that each investment cost function hi(si); i = 1, . . ., as in (4), and defined on

[0, usi
] is convex since its second derivative is positive. Indeed,

h′i(si) =
αi

2
(1− si)

− 3
2 and h′′i (si) =

3αi

4
(1− si)

− 5
2 > 0. (17)

Theorem 1: Variational Inequality Formulation

Assume that, for each retailer i; i = 1, . . . ,m, the expected profit function E(Ui(Q, s)) is

concave with respect to the variables {Qi1, . . . , Qin}, and si, and is continuously differenti-

able. Then (Q∗, s∗) ∈ K is a supply chain Nash equilibrium according to Definition 1 if and

only if it satisfies the variational inequality

−
m∑

i=1

n∑
j=1

∂E(Ui(Q
∗, s∗))

∂Qij

× (Qij −Q∗
ij)−

m∑
i=1

∂E(Ui(Q
∗, s∗))

∂si

× (si − s∗i ) ≥ 0, ∀(Q, s) ∈ K,

(18)
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or, equivalently, (Q∗, s∗) ∈ K is a supply chain Nash equilibrium product transaction and

security level pattern if and only if it satisfies the variational inequality

m∑
i=1

n∑
j=1

[
ci +

∂cij(Q
∗
ij)

∂Qij

− ρ̂j(Q
∗, s∗)−

n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂Qij

×Q∗
ik

]
× (Qij −Q∗

ij)

+
m∑

i=1

[
∂hi(s

∗
i )

∂si

− (1−
m∑

k=1

s∗k
m

+
1− s∗i

m
)Di −

n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂si

×Q∗
ik

]
× (si − s∗i ) ≥ 0,

∀(Q, s) ∈ K. (19)

Proof: From Lemma 1 we know that the feasible set for each retailer i, Ki; i = 1, . . . ,m,

is convex as is the Cartesian product of these sets, K. Under the imposed assumptions

on the expected utility functions of the retailers, according to Proposition 2.2 in Gabay and

Moulin (1980), which established the equivalence between the solution to a Nash equilibrium

problem and the solution to the corresponding variational inequality problem, we know that

each retailer i; i = 1, . . . ,m, maximizes his expected utility according to Definition 1 if and

only if

−
m∑

i=1

n∑
j=1

∂E(Ui(Q
∗, s∗))

∂Qij

× (Qij −Q∗
ij)−

m∑
i=1

∂E(Ui(Q
∗, s∗))

∂si

× (si − s∗i ) ≥ 0, ∀si ∈ [0, usi
],

(20)

which is precisely variational inequality (18).

In order to obtain variational inequality (19) from variational inequality (18), we note

that, at the equilibrium:

−∂E(Ui)

∂Qij

= ci +
∂cij(Q

∗
ij)

∂Qij

− ρ̂j(Q
∗, s∗)−

n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂Qij

×Q∗
ik; i = 1, . . . ,m; j = 1, . . . , n;

(21)

and

−∂E(Ui)

∂si

=
∂hi(s

∗
i )

∂si

− (1−
m∑

k=1

s∗k
m

+
1− s∗i

m
)Di−

n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂si

×Q∗
ik; i = 1, . . . ,m. (22)

Substituting the above expressions into variational inequality (20), we obtain variational

inequality (18). �

We now put variational inequality (18) into standard variational inequality form, that is:

determine X∗ ∈ K ⊂ RN , such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (23)

11



where F is a given continuous function from K to RN and K is a closed and convex set.

We define the (mn + m)-dimensional column vector X ≡ (Q, s) and the (mn + m)-

dimensional column vector F (X) ≡ (F 1(X), F 2(X)) with the (i, j)-th component, F 1
ij, of

F 1(X) given by

F 1
ij(X) ≡ −∂E(Ui(Q, s))

∂Qij

, (24)

the i-th component, F 2
i , of F 2(X) given by

F 2
i (X) ≡ −∂E(Ui(Q, s))

∂si

, (25)

and with the feasible set K ≡ K. Then, clearly, variational inequality (18) can be put into

standard form (23).

In a similar way, one can prove that variational inequality (19) can also be put into

standard form (23).

Additional background on the variational inequality problem can be found in the book

by Nagurney (1999).

Remark

If the retailers are not subject to budget constraints, usi
= 1, for i = 1, . . . ,m, and

there are no upper bounds on the product transactions, then the above model collapses

to the model in Nagurney, Nagurney, and Shukla (2015) with the associated variational

inequalities having the same structure as those in (18) and (19) but with a substantially

simpler feasible set which consists of the nonnegative orthant for the product transactions

and the security levels, with the latter also bounded from above by one. Such a model,

nevertheless, can be used to identify the (Q∗, s∗) under “ideal” unlimited conditions as to

budgets and product transactions.

We now provide some qualitative properties, in terms of existence and uniqueness of a

solution to variational inequality (18).

Theorem 2: Existence

A solution (Q∗, s∗) to variational inequality (18) (equivalently, (19)) is guaranteed to exist.

Proof: The result follows from the classical theory of variational inequaliities (see Kinder-

lehrer and Stampacchia (1980)) since the feasible set K is compact, and the function that

enters the variational inequality (cf. (23) – (25)) is continuous. �
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Moreover, we also have the following result.

Theorem 3: Uniqueness

The solution (Q∗, s∗) to variational inequality (18) is unique if the function F (X) as in (23),

with components defined by (24) and (25), and X ≡ (Q, s) is strictly monotone, that is:

〈(F (X1)− F (X2)), X1 −X2〉 > 0, ∀X1, X2 ∈ K, X1 6= X2. (26)

Proof: See Kinderlehrer and Stampacchia (1980).

We know that the function F (X) is strictly monotone over K if its Jacobian ∇F (X) is

positive definite over K.

Since the feasible set K has nonlinear constraints and this may pose challenges for nu-

merical computations, we now derive an alternative variational inequality to (19) which

incorporates Lagrange multipliers. Specifically, we associate the Lagrange multiplier λi ≥ 0;

i = 1, . . . ,m, with the budget constraint (5), respectively, for each retailer i = 1, . . . ,m. We

group these Lagrange multipliers into the vector λ ∈ Rm
+ . The new variational inequality is

defined over the feasible set K2 ≡
∏m

i=1K1
i ×Rm

+ , where K1
i ≡ {(Qi, si)|Qi ≥ 0; 0 ≤ si ≤ usi

}.

We show in Section 3 that this novel variational ienquality will be amenable to solution

via an iterative scheme that is straightforward to implement.

Theorem 4: Alternative Variational Inequality Formulation

A vector (Q∗, s∗, λ∗) ∈ K2 is a solution to variational inequality (19) if and only if it is a

solution to the variational inequality:

m∑
i=1

n∑
j=1

[
ci +

∂cij(Q
∗
ij)

∂Qij

− ρ̂j(Q
∗, s∗)−

n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂Qij

×Q∗
ik

]
× (Qij −Q∗

ij)

+
m∑

i=1

[
∂hi(s

∗
i )

∂si

− (1−
m∑

k=1

s∗k
m

+
1− s∗i

m
)Di −

n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂si

×Q∗
ik +

λ∗i
2

αi(1− s∗i )
− 3

2

]
×(si−s∗i )

+
m∑

i=1

[
Bi − αi(

1√
(1− s∗i )

− 1)

]
× (λi − λ∗i )) ≥ 0, ∀(Q, s, λ) ∈ K2. (27)
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Proof: Each retailer i; i = 1, . . . ,m, according to Definition 1, seeks to determine his

strategy vector (Qi, si) so as to

Maximize
(Qi,si)

E(Ui) = (1− pi)fi(Q, s) + pi(fi(Q, s)−Di)− hi(si) (28)

subject to:

αi(
1√

(1− si)
− 1)−Bi ≤ 0,

0 ≤ Qij ≤ Q̄ij, j = 1, . . . , n,

0 ≤ si ≤ usi
,

where fi(Q, s) is given by (7), hi(si) is given by (4), and pi = (1− si)(1− s̄).

Simplifying the terms in the objective function (28) and converting the Maximization

problem into a Minimization problem, the above optimization problem with the newly de-

fined feasible set K1
i becomes:

Minimize − fi(Q, s) + Di(1− si)(1− s̄) + hi(si) (29)

subject to:

αi(
1√

(1− si)
− 1)−Bi ≤ 0,

(Qi, si) ∈ K1
i .

If we now let Xi ≡ (Qi, si), X̂i ≡ (X1, . . . , Xi−1, Xi+1, . . . , Xm), and f̂i(Xi, X̂i) ≡ −fi(Q, s)+

Di(1−si)(1− s̄)+hi(si), we can rewrite retailer i’s optimization problem, where X̂∗
i denotes

the other retailers’ optimal solutions, as:

Minimize f̂i(Xi, X̂
∗
i ) (30)

subject to:

gi(Xi) ≤ 0, (31)

Xi ∈ K1
i . (32)

Note that gi(Xi) = αi(
1√

(1−si)
− 1)−Bi.

We now form the Lagrangian L(Xi, X̂
∗
i , λi) = f̂i(Xi, X̂

∗
i ) + λigi(Xi).

Also, we make the following assumption:

Assumption: (Slater Condition). There exists a Slater vector X̃i ∈ K1
i for each i = 1, . . . ,m,

such that gi(X̃i) < 0.

14



This is easy to verify.

Then, according to Koshal, Nedic, and Shanbhag (2011), pages 1049-1051, since f̂i is

convex in Xi and is continuously differentiable and gi is also convex and continuously dif-

ferentiable, and K1
i is nonempty, closed and convex, (X∗

i , λ∗i ) ∈ K1
i ×R+ is a solution to the

above optimization problem (30), subject to (31) and (32), if and only if it is a solution to

the variational inequality:

∇Xi
L(X∗

i , X̂∗
i , λ∗i )× (Xi −X∗

i ) + (−gi(X
∗
i ))× (λi − λ∗i ) ≥ 0, ∀(Xi, λi) ∈ K1

i ×R+, (33)

with ∇Xi
L representing the gradient with respect to Xi of the Lagrangian L.

Expanding (33) by using the definitions of our functions and vectors and making the

appropriate substitutions, we obtain that X∗
i ∈ K1

i is a solution to (33) if and only if

(Q∗
i , s

∗
i , λ

∗
i ) ∈ K1

i is a solution to the variational inequality:

n∑
j=1

[
ci +

∂cij(Q
∗
ij)

∂Qij

− ρ̂j(Q
∗, s∗)−

n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂Qij

×Q∗
ik

]
× (Qij −Q∗

ij)

+

[
∂hi(s

∗
i )

∂si

− (1−
m∑

k=1

s∗k
m

+
1− s∗i

m
)Di −

n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂si

×Q∗
ik +

λ∗i
2

αi(1− s∗i )
− 3

2

]
×(si−s∗i )

+

[
Bi − αi(

1√
(1− s∗i )

− 1)

]
× (λi − λ∗i ) ≥ 0, ∀(Qi, si, λi) ∈ K1

i . (34)

But inequality (34) holds for each i; i = 1, . . . ,m, since we are dealing with a Nash equilib-

rium problem, so summation of (34) over all i; i = 1, . . . ,m, we obtain variational inequality

(27). �

We now put variational inequality (27) into standard form (23). Let X ≡ (Q, s, λ)

and let F (X) ≡ (F̂ 1(X), F̂ 2(X), F̂ 3(X)) be the (mn + 2m)-dimensional vector consisting

of components: F̂ 1
ij(X); i = 1, . . . .m; j = 1, . . . , n, F̂ 2

i (X); i = 1, . . . ,m, and F̂ 3
i (X);

i = 1, . . . ,m, where:

F̂ 1
ij(X) ≡

[
ci +

∂cij(Qij)

∂Qij
− ρ̂j(Q, s)−

∑n
k=1

∂ρ̂k(Q,s)
∂Qij

×Qik

]
, ∀i,∀j,

F̂ 2
i (X) ≡

[
∂hi(si)

∂si
− (1−

∑m
j=1

sj

m
+ 1−si

m
)Di −

∑n
k=1

∂ρ̂k(Q,s)
∂si

×Qik + λi

2
αi(1− si)

− 3
2

]
, ∀i,

F̂ 3
i (X) ≡

[
Bi − αi(

1√
(1−si)

− 1)

]
, ∀i.

Also, let K ≡ K2. Then, clearly, variational inequality (27) can be put into standard form

(23).
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3. The Computational Procedure

The variational inequality (27) is amenable to solution via the Euler method of Dupuis and

Nagurney (1993), which, at each iteration yields closed form expressions for the production

transactions, the security levels, and the Lagrange multipliers.

Specifically, iteration τ of the Euler method where the variational inequality is expressed

in standard form (26) is given by:

Xτ+1 = PK(Xτ − aτF (Xτ )), (35)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem (23), where recall that X ≡ (Q, s, λ) and F (X) now consists

of the components as defined following (34).

As established in Dupuis and Nagurney (1993), for convergence of the general iterative

scheme, which induces the Euler method, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞,

aτ > 0, aτ → 0, as τ → ∞. Conditions for convergence for a variety of network-based

problems can be found in Nagurney and Zhang (1996) and Nagurney (2006).

Explicit Formulae for the Euler Method Applied to the Game Theory Model

The elegance of this algorithm for our variational inequality (27) for the computation of

solutions to our model is apparent from the following explicit formulae. In particular, we have

the following closed form expression for the product transactions i = 1, . . . ,m; j = 1, . . . , n:

Qτ+1
ij = max{0, min{Q̄ij, Q

τ
ij + aτ (ρ̂j(Q

τ , sτ ) +
n∑

k=1

∂ρ̂k(Q
τ , sτ )

∂Qij

Qτ
ik − ci−

∂cij(Q
τ
ij)

∂Qij

)}}, (36)

the following closed form expressions for the security levels, and for the Lagrange multipliers,

respectively, for i = 1, . . . ,m:

sτ+1
i =

max{0, min{usi
, sτ

i +aτ (
n∑

k=1

∂ρ̂k(Q
τ , sτ )

∂si

Qτ
ik−

∂hi(s
τ
i )

∂sτ
i

+(1−
m∑

j=1

sτ
j

m
+

1− si

m
)Di)−

λτ
i

2
αi(1− sτ

i )
− 3

2}}.

(37)

λτ+1
i = max{0, λτ

i + aτ (−Bi + αi(
1√

1− sτ
i

− 1))}. (38)

4. Numerical Examples

We implemented the Euler method, as discussed in Section 3, using FORTRAN on a

Linux system at the University of Massachusetts Amherst. The convergence criterion was
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ε = 10−4. The Euler method was considered to have converged if, at a given iteration, the

absolute value of the difference of each product transaction and each security level differed

from its respective value at the preceding iteration by no more than ε.

The sequence {aτ} was: .1(1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
. . .). We initialized the Euler method by setting

each product transaction Qij = 1.00, ∀i, j, the security level of each retailer si = 0.00, ∀i, and

the Lagrange multiplier for each retailer’s budget constraint λi = 0.00; ∀i. The capacities

Q̄ij were set to 100 for all i, j.

The examples were constructed to reflect recent data in specific industrial reports as

discussed below.

The examples had transaction cost functions of the following form:

cij(Qij) = aijQ
2
ij + bijQij, i = 1, . . . ,m; j = 1, . . . , n

and demand price functions of the following form:

ρ̂j(Q, s) = −mj(
m∑

i=1

Qij) + rj(
m∑

i=1

si

m
) + qj. j = 1, . . . , n

with aij, bij, mj, rj, and qj all greater than zero, for all i and j.

Note that the transaction cost functions are strictly convex and the demand price func-

tions are decreasing in the quantity demanded at a demand market but increasing in the

average security level at the demand market. We expect that the consumers are willing

to pay a higher price for a higher level of average security. The transaction cost functions

include the transportation costs and having such functions being increasing functions of the

product volume has been used in many network equilibrium problems (see Nagurney (1999,

2006) and the references therein).

It is straightforward to verify that, with the above functions, the assumptions of Theorem

1 hole. Indeed, we have that for all i and j:

∂2E(Ui)

∂Q2
ij

= −2mij − 2aij < 0

and
∂2E(Ui)

∂s2
i

= −3αi

4
(1− si)

− 5
3 − 2

Di

m
< 0, ∀si ∈ [0, usi

] .

Hence, the expected utility of each retailer i, E(Ui); i = 1, . . . ,m, is concave with respect to

its strategic variables: Qi1, Qi2, . . ., Qin, and si. In fact, these functions are strictly concave.

Clearly, the expected utilities are also twice continuously differentiable.
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4.1 Examples 1 and 2 with Sensitivity Analysis

Examples 1 and 2, with the accompanying sensitivity analysis, consist of two retailers and

two demand markets as depicted in Figure 2.

Demand Markets
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Figure 2: Network Topology for Examples 1 and 2 and Sensitivity Analysis

Example 1 and Sensitivity Analysis

The cost function data for Example 1 are:

c1 = 5, c2 = 10,

c11(Q11) = .5Q2
11 + Q11, c12(Q12) = .25Q2

12 + Q12,

c21(Q21) = .5Q2
21 + 2, c22(Q22) = .25Q2

22 + Q22.

The demand price functions are:

ρ1(d, s̄) = −d1 + .1(
s1 + s2

2
) + 100, ρ2(d, s̄) = −.5d2 + .2(

s1 + s2

2
) + 200.

The damage parameters are: D1 = 50 and D2 = 70 with the investment functions taking

the form:

h1(s1) =
1√

(1− s1)
− 1, h2(s2) =

1√
(1− s2)

− 1.

The damage parameters are in millions of $US, the expected profits (and revenues) and

the costs are also in millions of $US. The prices are in thousands of dollars and the product

transactions are in thousands. The budgets for the two retailers are identical with B1 =

B2 = 2.5 (in millions of $US). These data are representative for financial damages, due to a

cyberattack, as reported by Yakowicz (2014), and for cybersecurity budgets of medium-sized

to large firms, as reported by PricewaterhouseCoopers (2014a) in their survey.

The computed equilibrium solution for this example is given in Table 2. We know that this

equilibrium solution is unique for the product transactions and the security levels since the
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Table 2: Equilibrium Solution for Example 1

Solution Example 1
Q∗

11 24.27
Q∗

12 98.34
Q∗

21 21.27
Q∗

22 93.34
d∗1 45.55
d∗2 191.68
s∗1 .91
s∗2 .91
s̄∗ .91
λ∗1 0.00
λ∗2 0.00

ρ1(d
∗
1, s̄

∗) 54.55
ρ2(d

∗
2, s̄

∗) 104.34
E(U1) 8137.38
E(U2) 7213.49

Jacobian of the F (X) that enters variational inequality (23) is strictly diagonally dominant

and, hence, positive definite.

Retailer 1 has .21 (in millions) in unspent cybersecurity funds whereas Retailer 2 has .10

(in millions) in unspent funds. Hence, the associated Lagrange multipliers λ∗1 = λ∗2 = 0.00.

Both retailers have a firm vulnerability of .09 and the network vulnerability is, hence,

also .09.

We then proceeded to conduct the following sensitivity analysis. We kept the budget of

Retailer 2 fixed at 2.5 (in millions of $US dollars), and we varied the budget of Retailer 1

from B1 = 1 to B1 = 2.5 in increments of .5. The values for the equilibrium security levels of

the retailers, along with the network vulnerability, are reported in Figure 3. Figure 3 shows

that, as the budget of Retailer 1 increases, its equilibrium security level increases, and the

network vulnerability decreases. Hence, even Retailer 2 benefits from an increase in budget

of Retailer 1.
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Figure 3: Sensitivity Analysis for Example 1 for Budget Size Variations of Retailer 1 with
Retailer 2’s Budget Fixed
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Example 2 and Sensitivity Analysis

Example 2 was constructed from Example 1 and had the same data except that the invest-

ment cost function for Retailer 1 is now changed to:

h1(s1) = 10
1√

(1− s1)
− 1.

Such a change in an investment cost function could occur, for example, in the case of acqui-

sition of additional computers that need to be protected with additional associated costs.

The equilibrium solution is reported in Table 2. We also checked for the uniqueness of the

equilibrium product transaction and security level pattern examining the Jacobian ∇F (X)

with F(X) as in (23) for this example which is strictly diagonally dominant.

Table 3: Equilibrium Solution for Example 2

Solution Example 2
Q∗

11 24.27
Q∗

12 98.31
Q∗

21 21.27
Q∗

22 93.31
d∗1 45.53
d∗2 191.62
s∗1 .36
s∗2 .91
s̄∗ .63
λ∗1 3.68
λ∗2 1.06

ρ1(d
∗
1, s̄

∗) 54.53
ρ2(d

∗
2, s̄

∗) 104.32
E(U1) 8122.77
E(U2) 7207.47

With higher security investment cost for Retailer 1, in Example 2, he invests less in

security then he had in Example 1. The average security drops from s̄∗ = .91 in Example 1

to s̄∗ = .63 in Example 2 so that the network vulnerability s̄ = .09 in Example 1 whereas

v̄ = .37 in Example 2, an increase of over a factor of 4. Also, the equilibrium Lagrange

multipliers are now no longer equal to 0.00 since the budgets of both retailers are now fully

spent. The equilibrium product flows remain the same or decrease slightly. Both firms suffer

a drop in expected profits.

We then proceeded to conduct a similar sensitivity analysis as was conducted for Example
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1. The results are reported in Figure 4. The network vulnerability is consistently higher for

each datapoint in Figure 4 as compared to the respective datapoint in Figure 3.

These results demonstrate how increased cybersecurity investment costs can dramatically

affect the vulnerability of the supply chain network as to cyberattacks. Also, they reveal

that the budget size of one retailer can have system-wide effects not only in terms of network

vulnerability but also in terms of expected profits.

Figure 4: Sensitivity Analysis for Example 2 for Budget Size Variations of Retailer 1 with
Retailer 2’s Budget Fixed

4.2 Examples 3 and 4 with Sensitivity Analysis

Examples 3 and 4 consist of 3 retailers and 2 demand markets as depicted in Figure 5.

Example 3 and Sensitivity Analysis

Example 3 is constructed from Example 1 except for the new Retailer 3 data as given below:

c3 = 3, c31(Q21) = Q2
21 + 3Q21, c32(Q32) = Q2

22 + 4Q22,

h3(s3) = 3(
1√

(1− s3)
− 1), D3 = 80.
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Figure 5: Network Topology for Examples 3 and 4 with Sensitivity Analysis

The budget for Retailer 3 is 3.0 (in millions of $US).

The equilibrium solutions for Example 3 are reported in Table 4.

Table 4: Equilibrium Solution for Example 3

Solution Example 3
Q∗

11 20.80
Q∗

12 89.48
Q∗

21 17.80
Q∗

22 84.48
Q∗

31 13.87
Q∗

32 35.40
d∗1 52.48
d∗2 209.36
s∗1 .90
s∗2 .91
s∗3 .74
λ∗1 0.00
λ∗2 0.00
λ∗3 0.00
s̄∗ .85

ρ1(d
∗
1, s̄

∗) 47.61
ρ2(d

∗
2, s̄

∗) 95.49
E(U1) 6655.13
E(U2) 5828.82
E(U3) 2262.26

With the addition of Retailer 3, there is now increased competition. As a consequence,

the demand prices for the product drop at both demand markets and there is an increase in

demand. Also, with the increased competition, the expected profits drop for the two original
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retailers. The demand increases for Demand Market 1 and also for Demand Market 2, both

at upwards of 10%.

The vulnerability of Retailer 1 is .10, that of Retailer 2: .09, and that of Retailer 3:

.26 with a network vulnerability of: .15. The network vulnerability, with the addition of

Retailer 3 is now higher, since Retailer 3 does not invest much in security due to the higher

investment cost.

Interestingly, all retailers do not exhaust their cybersecurity budgets. This may be due,

in part, to information asymmetry in that the consumers at the demand markets only know

the average security in the network and, hence, a retailer may invest less in cybersecurity.

Hence, Retailer 3 is, in a sense, a “free rider.”

We conduct the following sensitivity analysis. The coefficient in the demand price function

at Demand Market 1 is .1. We proceed to increase this coefficient to 1.0, 2.0, and 3.0, and

report the percent increase in expected profits of the retailers in Figure 6. All retailers

benefit financially from consumers’ higher valuation placed on average network security.

These examples demonstrate that consumer awareness to supply chain network security,

even in an average sense, can benefit retailers in terms of expected profits.

Figure 6: Sensitivity Analysis for Example 3 for Changes in ρ1 Average Security Level
Coefficient

Example 4 and Sensitivity Analysis

Example 4 is constructed from Example 3 as follows. The data are identical except that all

the damages: D1 = D2 = D3 = 0.00. The computed equilibrium solution is given in Table
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5.

Table 5: Equilibrium Solution for Example 4

Solution Example 4
Q∗

11 20.80
Q∗

12 89.43
Q∗

21 17.80
Q∗

22 84.47
Q∗

31 13.87
Q∗

32 35.40
d∗1 52.47
d∗2 209.30
s∗1 .82
s∗2 .81
s∗3 .34
λ∗1 0.00
λ∗2 0.00
λ∗3 0.00
s̄∗ .66

ρ1(d
∗
1, s̄

∗) 47.60
ρ2(d

∗
2, s̄

∗) 95.48
E(U1) 6652.45
E(U2) 5828.10
E(U3) 2264.24

Increased competition from Retailer 3 continues to increase the demand and decrease the

prices when compared to Examples 1 and 2. However, with a sharp decrease in the damage

parameters, that is, from D1 = 50, D2 = 70, D3 = 80 to D1 = D2 = D3 = 0.00, we observe a

fall in the security levels for all the retailers. The average network security is down to 0.66

from 0.85 in the previous example. The vulnerability of Retailer 1 is 0.18, that of Retailer

2 is 0.19, and that of Retailer 3 is 0.66. Retailer 3, having a high investment cost, seems is

the most vulnerable due to low investments in cybersecurity.

Interestingly, all retailers do not exhaust their cybersecurity budgets. This may be due,

in part, to information asymmetry in that the consumers at the demand markets only know

the average security in the network and, hence, a retailer may invest less in cybersecurity.

In Figure 7 we display the results of the following sensitivity analysis. We increase

the damages for the retailers from D1 = D2 = D3 = 0.00 to D1 = D2 = D3 = 5.00

and then to D1 = D2 = D3 = 10.00, followed by increments of 10.00 through 30.00. As
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the damages increase, the average security levels go up and the network vulnerability goes

down. Retailers become more sensitive to building security as the damages accrued due to

a successful cyberattack increase.

Figure 7: Sensitivity Analysis for Example 4 for Changes in Financial Damages with D1 =
D2 = D3

5. Summary, Conclusions, and Suggestions for Future Research

Increasing cybercrime incidents, and associated impacts, emphasize the importance of

investment into counteracting these events for companies and other organizations, including

financial institutions, retailers, and governments. Several of the recent notable data breaches

and thefts have been reported by retailers in the United States, wherein financial damage,

theft of critical information, and reputation loss took place. Complexities in the supply

chains with numerous spatially dispersed entry points have led to loopholes that attackers

have exploited. Retailers, being in the forefront, have become highly susceptible to breaches

and ensuing losses. As a result, they seek to determine the optimal level of investments

to be made given strict budget constraints for cybersecurity. This paper builds a general

framework for quantifying these investments in the backdrop of competing retailers trying to

maximize their expected profits subject to budget constraints. The game theory framework

also identifies the vulnerability of the individual retailers and that of the supply chain network

on the whole.

We develop a bipartite supply chain network game theory model consisting of retailers and

demand markets. The retailers may be subject to a cyberattack and seek to maximize their

expected profits by selecting their optimal product transactions and cybersecurity levels.
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The retailers compete noncooperatively until a Nash equilibrium is achieved, whereby no

retailer can improve upon his expected profit. The probability of a successful attack on a

retailer, in our framework, depends not only on his security level, but also on that of the other

retailers. Consumers at the demand markets reveal their preferences for the product through

the demand price functions, which depend on the demand and on the network security level,

which is the average security of the supply chain network. We include nonlinear investment

cost functions levied on each retailer which is bounded by a budget level. These nonlinear

budget constraints are incorporated into a variational inequality formulation through two

alternative variational inequality formulations.

The governing equilibrium conditions and convexity of the feasible set have been derived

for the variational inequalities, and the solvability is demonstrated with an appropriate algo-

rithm with features supporting computations. Specifically, the algorithm yielded closed form

expressions for the product transactions between retailers and demand markets, the security

levels of retailers, as well as the Lagrange multipliers associated with the budget constraints

at each iteration. Various data instances are evaluated through the algorithm, with relevant

managerial insights and sensitivity analysis. The latter is conducted on the budgets, the co-

efficients of the demand price functions, and the damage parameters for pertinent analysis.

The examples illustrate the impacts of an increase in competition, changes in the demand

price functions, changes in the damages incurred, and changes in the cybersecurity invest-

ment cost functions, and budgets on the equilibrium solutions and on the incurred prices

and the expected profits of the retailers. We also provide the vulnerability of each retailer

in each example and the network vulnerability.

The generalized framework of cybersecurity investments in a supply chain network game

theory context with nonlinear budget constraints is a novel contribution to the literature of

both variational inequalities and game theory, and cybersecurity investments. The results

in this paper pave the way for a range of investigative questions and research avenues in this

area. For instance, at present, the model considers retailers and consumers in the supply

chain network. However, it can be extended to include additional tiers, namely, suppliers,

as well as transport service providers, and so on. Also, a case study and empirical analysis

can further strengthen the validity of the model and assist in the process of arriving at

investment decisions related to cybersecurity for specific companies/organizations. We leave

the above research directions for future work.
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